Beta Divergence for Clustering in Monaural Blind Source Separation

Martin Spiertz, Volker Gnann

Institute of Communications Engineering

RWTH Aachen University

8130

Clustering of Separated Sound Events

Feature according to source-filter model

- Evaluation motivated by MFCC
 - Mel filter bank
 - Logarithm
 - But: no decorrelation

Note spectrum Source Filter X

Clustering by second NMF

- Estimates two instrument-specific Filters - Parameter β specifies factorization
- by target cost function: β -divergence
- $\beta = 1$ divergence
- $\beta = 2$ Euclidean distance
- Activity matrix corresponds to clustering decision

Experimental Results

- SNR values for different dynamic differences of input signals
- Evaluated for a large test set (1770 mixtures)
- $\beta = 2$ (Euclidean distance)
- Better for equal loudness
- $\beta = 1$ (divergence)
 - Better for large dynamic differences - Best overall results for constant β
- Adaptive $\beta, \beta \in \{1, 2\}$
- Best results for unknown dynamic differences
- Only slightly better results with $1 \le \beta \le 2$

Histogram of chosen features

- 100 training cycles of AdaBoost with different
- partitions of training/test set
- Five features per training cycle
- Roughly six features sufficient

- Robust and meaningful training

Signal Flow of NMF-Based Separation Algorithm **Unsupervised separation** x(n) Mixture - Input: **Blind Source** Monaural mixture Separation (BSS) Number of sources **Short Time Fourier** - No training step necessary **Transform (STFT)** - No instrument classification X Spectogram of mixture Non-Negative Matrix Factorization (NMF) $C_i, 1 \leq i \leq I, I > 2$ Separated sound events Clustering $\{\widetilde{\mathbf{S}}_m,\,m\in\{1,2\}\}$ Separated sources Inverse Inverse STFT | STFT $\widetilde{s}_2(n)$ Output signals

Adaptive β Decision

Classify optimal β

- Try both ($\beta = 1$ and $\beta = 2$)
- Evaluate features for both cases
- Features based on - Estimation of dynamic differences
 - Common assumptions for BSS
 - e.g. statistical independence

AdaBoost

- Classifier: which β leads to higher SNR (decision between 2 classes)
- Combines weak classifiers to single strong classifier
- Weak classifier
 - 1 dimensional: one feature + treshold

List of features

- Features evaluated for mixture x(n) and output signals $\tilde{s}_m(n)$

Signal Features for Signal x , ${f X}$	
1	Estimated dynamic differences: $10 \log_{10} \left(\ \mathbf{X}\ _2^2 \right)$
2	Estimated dynamic differences: $10 \log_{10} (\ x\ _2^2)$
3	Mean of temporal dynamics d _t
4	Variance of temporal dynamics d _t
(Dis-)	Similarities of separated signal features
5-8	Mean of features (1-4) for both active sources $\widetilde{s}_m(n)$, $\widetilde{\mathbf{S}}_m$
9-12	Difference of features (1-4) between both active sources $\widetilde{s}_m(n)$, $\widetilde{\mathbf{S}}_n$
Corre	elation Features
13	Cross-correlation between both $\widetilde{\mathbf{S}}_m$
14	Pearsons rank correlation between both $\widetilde{\mathbf{S}}_m$
15	Cross-correlation between both $\tilde{s}_m(n)$
16	Pearsons rank correlation between both $\tilde{s}_m(n)$
Statis	stical Independence
17	Histogram for $\tilde{s}_m(n)$
18	Histogram for $\widetilde{\mathbf{S}}_m$

Conclusions

- Few features (~6) sufficient for adaption of β
- Large gains for unknown dynamic differences

Future Work

- Extend concept to adapt other parameters of algorithm, e.g. number of mel filters for estimation of instrument-specific filter

