Beta Divergence for Clustering in Monaural Blind Source Separation
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Blind Source Separation Scenario Signal Flow of NMF-Based Separation Algorithm
x(n) Mixture Unsupervised separation
- Input:
Blind Source l Monaural mixture
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Short Time Fourier - No training step necessary
Transform (STFT)

- No instrument classification

l X Spectogram of mixture

Advantages of monaural scenario: Possible applications: Non-Negative Matrix
- Most flexible in number of sensors - Remixing Factorization (NMF)
- Multichannel case: - Denoising
useful as preprocessing step - Automatic transcription |05, 1 << I, 1> 2 Separated sound events
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Feature according to source-filter model 5 (n) 52(71) Output signals
- Evaluation motivated by MFCC Source Filter Note_spectrum
- Mel filter bank T
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Clustering by second NMF
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- Estimates two instrument-specific c Try both (3 = 1and 3 = 2)
Filters “E’ - Evaluate features for both cases
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by target cost function: £ o - Estimation of dynamic differences
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- Activity matrix corresponds to
AdaBoost

- Classifier: which 3 leads to higher SNR (decision between 2 classes)
- Combines weak classifiers to single strong classifier
- Weak classifier

» 1 dimensional: one feature + treshold

clustering decision

Estimated activity matrix

List of features
- Features evaluated for mixture x(n) and output signals 5,, (1)

Signal Features for Signal =, X

1 | Estimated dynamic differences: 10 log, (||X]|5)

2 | Estimated dynamic differences: 10 logy, (HxH%)
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Experimental Results 4 | Variance of temporal dynamics d,

3 | Mean of temporal dynamics d,

(Dis-)Similarities of separated signal features
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SNR values for different dynamic differences 5-8 | Mean of features (1-4) for both active sources s,,,(n), S,, _

of input signals 9-12 | Difference of features (1-4) between both active sources 5m(7), S,,
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% T » Evaluated for a large test set (1770 mixtures) Correlation Features _
= _ - : 13 | Cross-correlation between both S
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= - Better for equal loudness m
S . 3 =1 (divergence) 15 | Cross-correlation between both S, (7)
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=ne - Best overall results for constant (3 Statistical Independence
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% 3L —-o—[3=2 | - Best results for unknown dynamic differences 18 | Histogram for S,,
» Q — B=adaptive - Only slightly better results with 1 < 5 < 2

00 b

12 dB 6 dB 0 dB
Dynamic difference

« Histogram of chosen features

- 100 training cycles of AdaBoost with different
partitions of training/test set
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- Five features per training cycle
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* Roughly six features sufficient
- Robust and meaningful training
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Conclusions
- Few features (~6) sufficient for adaption of 3

- Large gains for unknown dynamic differences

Future Work

- Extend concept to adapt other parameters of algorithm,
e.g. number of mel filters for estimation of instrument-specific filter
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