Least-Squares Local Tuning Frequency Estimation for Choir Music

V. Gnann, M. Kitza et al.

Institut für Nachrichtentechnik

RWTH Aachen University

Spectrogram

- STFT with long windows, low sampling rate, and without overlap.
- → high frequency resolution
- Frequency restriction weakens influence of high partials
 - necessary because some high partials have a big deviation to the next equally-tempered tone
 - Restrict analysis to fundamental frequency range: pprox 80-1300~Hz.

Motivation

- Unaccompanied choirs tend to lower their pitch while singing, often not noticed by their conductors.
- Objective: Tuning pitch display as a mobile app which works
 - independent from the actual tones
 - also in polyphonic situations.

	O	0	0	•	•	•	•••	0	•		(#)•	0
Partial		2	3	4	5	6	7	8	9	10	11	12
f _{harm}	65.4	130.8	196.2	261.6	327.0	392.4	457.8	523.3	588.7	654.1	719.5	784.8
f _{temp.}	65.4	130.8	196.0	261.6	329.6	392.0	466.2	523.3	587.3	659.3	740.0	784.0
Cent	0.0	0.0	1.96	0.0	-13.7	2.0	-31.2	0.0	3.9	-13.7	-48.6	2.0

Choir On/Off Detection

- Prevents noice-induced drifting of the measured tuning.
- Combination of
 - energy measure
 - spectral flatness measure
- Thresholds adjustable (due to different noise conditions)

Peak picking

- Analyzes the spectrogram to find local maxima (peaks)
- max. 6 maxima with a minimum distance between them

Frequency-Limited STFT Magnitude Spectrogram

For each frame:

Choir On/Off Detection

Choir singing

Peak Picking

Refinement Method?

Peak refinement by phase difference

- Measurement of the *instantaneous* frequency of the peak frequency bin.
- Instantaneous frequency can be calculated from the phase difference.
- $\rightarrow f_i(n, k) = f_s\left(\frac{k}{N} + \frac{\operatorname{princarg}(\varphi(n, k) \varphi(n-1, k))}{2\pi}\right)$

Least-Squares

Determination

of Concert A

Refine Frequencies

by Phase Difference

Concert A

Refine Frequencies by

Interpolation

Result: Pitch Shifted Signals

cents

Choir

not singing

Keep old

Display

Windows $\varphi_0 = \varphi_0 = \varphi_0$ 2000 2500 3000 3500 4000 1500 Time (*t* in samples, 1 sample=1 degree)

- Paraboloid through peak position and surrounding frequency bins
- Paraboloid peak = refined peak position

Peak refinement by interpolation

|S(f)|

Results: Real-World Recording

- Gospel Choir
- Pitch decline: about one semitone
- Original + Compensation with a pitch shifter

Optimal Tuning Pitch

- Least-Squares Determination
- with f_i = peak frequencies, $s(\cdot)$ = corresponding semitone
- $n_{\text{cent}} = 1200 \cdot \log_2 \left(\frac{f_A}{f_{ARef}} \right)$