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ABSTRACT

In this paper, we extend the Real-Time Iterative Spectrogram Inver-

sion method (RTISI) for generating a time-domain audio signal from

a magnitude spectrogram such that it can handle changing spectro-

gram window lengths. For each desired window length, we use a

separate buffer structure and synchronize the buffers each time the

window length changes. This way, the proposed method helps to

improve the time/frequency-resolution trade-off for algorithms that

operate on magnitude-only spectra.

Index Terms— Short-time Fourier transform, phase estimation,

magnitude spectrum inversion, window switching

1. INTRODUCTION

Magnitude spectrogram inversion, also known as phase estimation,

has a wide range of applications, such as time/pitch scale modifica-

tion or source separation. Until now, all phase estimation algorithms

require a fixed window length for the short-time Fourier transform

(STFT). This implies a constant trade-off between the time and fre-

quency resolution due to this constant window length and Heisen-

berg’s uncertainty principle [1]. As a rule of thumb [2], we can

characterize audio signals as large parts with slow changes, inter-

rupted by short parts of sudden changes (transients). When using the

STFT, the choice of the window length is critical: For non-transient

audio signal parts, a high frequency resolution is more important

than a high temporal resolution, thus a long window is preferred.

Audio parts containing transients need a high temporal resolution,

so shorter window lengths better suit to them. For these reasons,

window switching, first introduced in [3], has become an important

method to adapt this trade-off to the signal in audio coding.

In this paper, we present an approach for signal reconstruction

from magnitude spectrograms with different window lengths. It ex-

tends the Real-Time Iterative Spectrogram Inversion method (RTISI,

[4]) by using two buffers, one for each window length. When a se-

quence of spectra occurs, the phase estimator copies the audio data

from the long-window buffer to the short-window buffer. Then, the

estimation is performed on the short-window buffer. The phase esti-

mation result is transferred to the long-window buffer such that the

overlap-add property is preserved.

This paper is organized as follows: In Section 2, we describe the

generation of spectrograms with window switching that can be han-

dled by the proposed RTISI modification. In Section 3, we present

the modifications that enable RTISI to work with different window

lengths. The paper closes with an example and an outlook.

2. GENERATION OF WINDOW-SWITCHED

SPECTROGRAMS

Audio coding standards like Advanced Audio Coding (AAC, [5])

typically use the overlap-add method to reconstruct audio signals

from the decoded time frames. In order to achieve perfect recon-

struction, the overlap-add method requires the overlapping window

functions to sum up to a constant. To ensure this overlap-add prop-

erty, AAC uses bridge windows when the window length changes.

For maximum coding efficiency, the window length L is usually

twice the distance between the start samples of adjacent time frames

S, i.e. L = 2S.

The requirements for phase estimation with RTISI are different.

As explained in Section 3.1, RTISI basically exploits the overlap

between adjacent frames. For that reason, a higher overlap ratio

L/S is preferred; a good choice is L = 4S [4]. This makes the

construction of bridge windows rather inconvenient. Additionally,

bridge windows imply multiple window forms of the same length,

which makes the spectral leakage properties more difficult to be pre-

dicted. For these reasons, we do not apply bridge windows. Instead,

we simply represent every long-window time frame which we con-

sider to have transients by a sequence of overlapping short-window

time frames. We fulfill the overlap-add property by introducing a

window compensation step within the phase estimator. The overlap

ratio L/S whithin a short-window sequence is the same as within

long-window sequences. As a result, we can calculate the number

N of short spectrograms that we need to represent a long one with

N = 1 +
Llong − Lshort

Sshort

. (1)

As window function w(n), we employ the slightly modified

Hamming window as defined in [6]:

w(n) =

(

2
√

S√
(4a2+2b2)L

(a + b cos(2π n

L
)), if 1 ≤ n ≤ L,

0, otherwise,
(2)

where a=0.54, and b=−0.46. This window fulfills the condition

∞
X

m=−∞

w2(n − mS) = 1, ∀n, (3)

so that perfect reconstruction in the overlap-add step is achieved if

w(n) is used as an analysis and as a synthesis window.

The generation process is illustrated in Figure 1. After win-

dowing, we calculate the discrete Fourier transform magnitude for
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Fig. 1: Generation of spectrograms using window switching. The

first step (segmentation) is equivalent to STFT windowing with a

rectangle window. A transient detector decides if a segment is pro-

cessed with one single long or with multiple overlapping short Ham-

ming windows. After the actual windowing, each windowed segment

is transformed into the frequency domain. Note that only the first
L

2
+ 1 coefficients are needed to characterize a spectrum due to its

symmetry for audio signals, which are real-valued.

each windowed time frame. As usual, we can alter these magni-

tudes in various ways to implement frequency-domain audio effects.

We must keep in mind that we have two different configurations of

magnitude coefficients per time frame because of the different win-

dow lengths: Either one spectrum with Llong/2 + 1 coefficients or

N spectra with each Lshort/2 + 1 coefficients. After these modifica-

tions, we need a way to re-convert the manipulated magnitudes back

to the time domain, as described in Section 3.

The overlap-add property is not fulfilled at the signal boundaries

and during the window-switching operation, so we must take special

care on this problem when estimating the phase.

3. PHASE ESTIMATION FOR WINDOW-SWITCHED

SPECTROGRAMS

As described in the previous section, our phase estimation algorithm

is basically an extension of RTISI [4] with two buffers. The two

buffers store the same audio data, but analyzed with two window

lengths. Since the short window length is only used for transient

processing, we consider the use of the long-window-length buffer

as the normal mode. The short-window-length buffer processes the

transient signals. The buffer structure is illustrated in Fig. 2.

Each buffer can be interpreted as a table with rows and columns.

Both of them represent a time axis. Each buffer row represents an

STFT frame, storing the current signal estimation in the time domain

and (not shown in the illustration) the according Fourier transform

magnitude. The buffer rows are synchronized such that each column

index represents the same sample index in all rows.

3.1. Standard RTISI processing

To initialize the RTISI buffer, the buffer rows are filled with zeros. If

a signal estimation is already known, we window it (using the anal-

ysis and synthesis window) and fill the according buffer row with

the result instead. Since RTISI is an iterative algorithm, the result

quality depends on the initialization.

Long-window-

length RTISI

buffer

Short-window-

length RTISI

buffer

Buffer sum

Buffer sum with window sum error compensation

rleft

rright

Fig. 2: Two RTISI buffers with different window lengths. To transport

audio data between the buffers, the algorithm calculates the buffer

sum, compensates the window sum error, and windows the result for

each target buffer row. The dotted lines denote the window function

the audio data in the buffer are implicitly multiplied with.

Let us assume now that the audio data for all rows except the last

one have already been estimated. We can estimate the content for the

last row (or improve its estimation) by the following procedure:

1. Calculate the sum of all buffer rows and limit it to the part

covered by the last row.

2. As explained in [4] with more details, this sum is implicitly

windowed with a sum of overlapping analysis and synthesis

windows. This leads to inconsistencies between time and fre-

quency representation. We call that phenomenon the window

sum error. Multiply this sum with
w(n)

PL/S
m=1

w2(n−mS)
to com-

pensate the error, so that the sum is implicitly windowed with

w(n).

3. Calculate the phase spectrum of the sum using an FFT.

4. Combine each phase of phase spectrum with the correspond-

ing magnitude of the magnitude spectrum stored in the buffer

(see [4] for details).

5. Transform this combination into the time domain (using an

inverse FFT).

6. Window the result and store it into the last row.

These steps can be iterated several times. After a certain num-

ber I of iterations, we commit the frame stored in the last row and

synchronize the buffer to the next frame. After synchronization, we

check if a signal estimation for the next frame is available. If this is



the case, we initialize the last buffer row with this estimation (after

windowing), otherwise with zeros. An overlap-add synthesis step

assembles the final audio data from the committed frames.

An important extension for RTISI is the use of look-ahead

frames. Here, after the estimation of the last row content, its

predecessors are re-estimated backwards, until the number k of

look-ahead frames is reached. The kth row (counted from the last) is

committed. This extension is explained in more detail in [4].

3.2. Extension to a dual time/frequency resolution

Section 3.1 shows how the phase of audio data is estimated when

only one window length is used, i.e. no transients occur. If a transient

has occured and been detected, the algorithm notices that via the

spectrogram configuration (see Section 2). In this case, the phase

estimation works as follows:

1. Copy the audio content from the long-window buffer into the

short-window buffer. Within this process, compensate the

window sum error for each target row.

2. Find the left and the right short-window buffer rows rleft and

rright which correspond to the current long-window buffer row

that should be estimated in the non-transient case.

3. Estimate the audio data for the rows rleft up and including

rright as described in Section 3.1 using the short-window

buffer.

4. Copy the estimated audio data from the short-window buffer

back to the long-window buffer with window sum error com-

pensation.

3.2.1. Buffer size

The audio copy process and the window sum error compensation are

illustrated in Figure 2. Since both buffers store the same amount

of audio data, the number of columns is the same in both buffers.

Thus, the number of short-window buffer rows Rshort can be calcu-

lated from the number of long-window buffer rows Rlong as

Rshort = N + (Rlong − 1) · Slong

Sshort

. (4)

3.2.2. Audio transfer and window sum error compensation

The audio data stored in the buffer are represented by the sum of

the buffer rows, column by column, so we can use the buffer sum to

exchange the audio data between the buffers. Since the audio data

in the buffer rows are windowed, the buffer sum is also implicitly

windowed with the window sum. As described in [7], we compen-

sate this error by dividing the buffer sum element-wise by the win-

dow sum. After that, we multiply the buffer sum for each destination

row element-wise with the analysis and the synthesis window before

storing the results in the destination buffer.

3.2.3. Short-window buffer edge row calculation

Let i be the index of the long-window buffer row to process. Then,

the first and the last short-window buffer row indices rleft and rright

are calculated as

rleft(i) = i · Slong

Sshort

, (5)

rright(i) = rleft(i) + N − 1. (6)

4. EXAMPLE

To show the benefits of window switching also for magnitude-only

spectrogram processing, we have mixed the castanet and the double

bass arpeggio example from the EBU-SQAM library [8]: Castanets

require a high temporal resolution, and double bass requires a high

frequency resolution due to its low pitch. From a part of this mix-

ture, we created the magnitude spectra and re-estimated the phase

using RTISI with look-ahead with and without window switching.

As fixed window lengths, we have chosen 512, 1024, and 2048 sam-

ples, respectively, with a sampling frequency of 48 kHz. For window

switching, we have chosen window lengths of 512 and 2048 samples.

We used a peak detection algorithm as described in [3] for transient

detection. In all examples, we set the number of lookahead frames

k to 3 and the number of iterations per frame estimation I to 50.

As analysis and synthesis window, we used the Hamming window

shape (Eq. 2). The results are presented in Figure 3. We can see that

the window switching phase estimation approximates the original

best. The 512-sample-window-length phase estimation causes dis-

tortions in the frequency domain, whereas the 2048-sample window

leads to the well-known pre-echo artifacts [2] in the time domain.

The most interesting comparison is window switching against the

1024-sample window. We can see that window switching leads to a

better time and frequency resolution than the fixed medium window

length.

To confirm these experiments, we have measured the STFT-

magnitude signal-to-error ratio (SER) for these signals. This SER

is defined as follows [4]:

SER = 10 log

∞
P

m=−∞

π
R

Ω=−π

|X(mS, Ω)|2dΩ

∞
P

m=−∞

π
R

Ω=−π

(|X(mS, Ω)| − |X ′(mS, Ω)|)2dΩ

(7)

This SER measure operates on STFT magnitudes and thus de-

pends on its own STFT window length. The results are given in Table

4. It should be noted that, in principle, RTISI bases on the Griffin

and Lim [6] iteration scheme which maximizes the SER function

(7). As a consequence, the SER is best if the SER window length

equals the window length used by RTISI. To take this effect into ac-

count, we additionally measured the examples with a SER window

length L of 500, 1000, and 2000 samples additionally to 512, 1024,

and 2048. In all cases, we set the hop size S for the SER measure

to L/4. We can see that, in our example, window switching outper-

forms the fixed-window RTISI for all SER measure window lengths

except 1024 and 2048, where the direct optimization effect occurs as

described above.

Table 1: SER measurements for the examples in Figure 3. For the

switching experiments, the RTISI window lengths are 2048 (normal

mode) and 512 (transient mode) samples. The SER measure window

lengths of 500, 1000, and 2000 samples are chosen to compensate

the direct SER optimization which RTISI performs if the SER mea-

sure window length equals the RTISI window length.

SER measure Spectrogram window

window length length (samples) Switched

(samples) 512 1024 2048 windows

500 16.27 13.48 11.69 24.00

512 18.37 13.86 11.88 24.73

1000 14.80 24.05 18.07 24.87

1024 14.79 26.10 18.23 24.72

2000 11.21 22.14 21.63 22.35

2048 11.14 22.18 24.58 22.60



Original 512 Samples 2048 Samples

Switched Windows 1024 Samples

Fig. 3: Waveforms and spectrum plots for a mix of double bass and castanets. For different window lengths, we calculated the magnitudes

and estimated the phases. The lengths for the switched window example were 512 and 2048 samples. The signal part chosen for frequency

analysis was one second long; from this second, an 800-sample long castanet beat is plotted in the time domain.

5. CONCLUSIONS AND OUTLOOK

We have presented a method to invert spectrograms with different

window lengths. This method allows to combine the advantage of

window switching with algorithms that operate on magnitude spectra

only. This opens a new way to improve the quality of applications

working in the frequency domain, like denoising, time/pitch scale

modification, or comb-filter free audio mixing.

The algorithm can easily be extended to more than two buffers,

which allows the use of more than two window lengths. How-

ever, this would require a technique to determine the optimal

time/frequency resolution optimum, which is an interesting topic

for future research.
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