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ABSTRACT

Informed Source Separation (ISS) is a topic unifying the research
fields of both source separation and source coding. Its main objective
is to recover audio objects out of a mixture with a source separation
step assisted by a set of compact parameters extracted with complete
knowledge of the sources. ISS can be used for applications such as
active listening and remixing of music (e.g. karaoke).

In this paper, we propose a new ISS method which includes a
semi-blind source separation (SBSS) step in the ISS decoder to de-
crease the amount of parameter bit rate. SBSS is conducted by fac-
torizing the mixture in time-frequency domain by nonnegative ma-
trix factorization (NMF). The transmitted parameters consist of a
compact NMF initialization as well as residuals calculated in the
NMF domain. We show in simulations that using SBSS in the de-
coder increases the separation quality and that our scheme improves
the rate-distortion performance in comparison to a state-of-the art
method.

Index Terms— Informed source separation, nonnegative matrix
factorization, audio object coding

1. INTRODUCTION

Informed source separation (ISS), initially proposed in [1], is a spe-
cial case of audio source separation and consists of two stages: In
the encoding stage, the original audio sources are perfectly known
and used to extract a compact set of side-information. In the decod-
ing stage, this side-information is used to assist a source separation
step trying to extract the sources out of the audio mixture which is
assumed to be perfectly known at the decoder. This procedure is also
closely related to spatial audio object coding (SAOC) [2].

The ISS algorithm in [3] encodes the source spectrograms in the
time-frequency (TF) domain with help of nonnegative tensor factor-
ization (NTF) and uses Wiener-like TF masking as source separation
in the decoding step. A comparative study over recently developed
ISS methods is given in [4]. The coding scheme proposed in [5]
uses a modified NTF for audio upmixing which is similar to coding-
based ISS (CISS) [6]. CISS tries to unify the two worlds of source
separation and coding even further and uses transform coding of the
sources in the TF domain and encodes the necessary parameters with
NTF. In [7], perceptual modeling into CISS is introduced. Most of
the NTF-based methods [3, 5, 8] use solely Wiener-like TF mask-
ing as source separation in the decoding step and transmit quantized
versions of the corresponding TF masks whereas [6] additionally en-
codes quantized source residuals.

In this paper, we include a semi-blind source separation (SBSS)
algorithm to the ISS decoder to enhance the separation quality for
lower bit rates. The separation step is still based on TF masking

where the TF masks are obtained by a SBSS algorithm using non-
negative matrix factorization (NMF). The encoder controls this step
to maximize the separation quality by aligning the mixture NMF
model and the NMF model obtained by separating each source inde-
pendently. Therefore we name our method “NMF-ISS”.

This paper is structured as follows: Section 2 gives a general
overview over the proposed method. The decoder and encoder are
described in Section 3 and Section 4. Section 5 shows evaluation
results and Section 6 concludes this paper.

2. OVERVIEW

The mono-channel audio mixture x in time domain consists of M
sources sm such that x =

∑M
m=1 sm. In the following, all signals

are denoted in the TF domain: The time-domain signals are trans-
formed by the short-time Fourier transform (STFT) and a subsequent
spectral dimension reduction step which filters the spectral dimen-
sion of the absolute-valued STFT output with a Mel-filterbank1 to
speed up the following computation steps [9] and decrease the pa-
rameter bit rate. The resulting mixture and source magnitude spec-
trograms are labelled X and Sm respectively.

Instead of transmitting a quantized NMF model describing the
sources directly as similarly done in e.g. [3], we propose to transmit
a compact initialization for an NMF which estimates the NMF model
of the mixture and a residual NMF model to enhance the separation
quality.

The flowgraph of the NMF-ISS encoder is depicted in Fig. 1:
The encoder contains a complete decoder which performs semi-blind
source separation (SBSS) explained in Section 3. The mixture X,
which is assumed to be perfectly known at the decoder, is separated
with NMF into acoustical events also denoted as components. The
estimated sources S̃m are obtained by Wiener-like TF masking. To
enhance the SBSS performance, the encoder (described in Section 4)
aligns the decoder NMF model describing the mixture and an NMF
model which describes the sources: The source magnitude spectro-
grams Sm are independently separated by NMF to yield the source
NMF model which results in an approximation of interference-free
NMF components in comparison to the mixture NMF model. This
model is then used to calculate a compact initialization for the de-
coder NMF. After executing the decoder, the encoder uses the source
NMF model again to compute a residual NMF model which takes
the remaining differences between the source and the decoder NMF
model into account and enhances the overall separation quality even
further. Therefore, the side-information transmitted to the decoder
consists of the NMF initialization and residual model as well as op-
timal parameters for the SBSS algorithm.

1The Mel-filterbank consists ofF triangular filters whose central frequen-
cies are spaced linearly on the mel scale f = 1127 log (1 + fHz/700).
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Fig. 1. Block diagram of the proposed NMF-ISS encoder in time-frequency domain. The “C” block concatenates all source NMF matrices in
the component dimension to form joint matrices Bsrc or Gsrc. The “Coding” and “Decoding” blocks include quantization and bit coding or
the inverse operations respectively. The transmitted side-information consists mainly of a compact NMF model initialization and the residual
NMF model to enhance the quality of the semi-blind source separation (SBSS) algorithm.

With this approach, our proposed method becomes flexible: The
decoder is able to operate blindly in the case that no side-information
is transmitted at all or the encoder could decide to skip the NMF
in the decoder such that the residual model would consist of the
complete source NMF model as done similarly in [3] (refer to Sec-
tion 4.3).

3. NMF-BASED SOURCE SEPARATION

The NMF-ISS decoder uses the blind source separation algorithm
of [9, 10] which is initialized and refined under knowledge of the
sources; therefore we denote the algorithm used here as semi-blind
and explain it in the following.

The mixture spectrogram X ∈ RF×T
+ is factorized by NMF into

I components
X ≈ B GT , (1)

with the spectral basis matrix B ∈ RF×I
+ , temporal gain matrix

G ∈ RT×I
+ , number of spectral (Mel-) bins F and number of time

frames T . The number of components I is a user defined parameter.
The NMF variant used here, denoted as β-NMF, estimates B and
G by evaluating multiplicative update rules which are derived by
minimizing the β-Divergence between the left and the right hand
side of Eq. (1) [9]. Here, the β-Divergence is extended by a widely
used constraint which favors temporal continuity of the gain vectors
and is weighted with αtc [11]. The constraint is deactivated with
αtc = 0.

The estimated complex source spectrograms are reconstructed
with Wiener-like TF masking

S̃m(f, t) = X(f, t)
∑

r(i)=m

Ci(f, t)/
∑
i′

Ci′(f, t) (2)

with component index i, spectral index f , time bin t and Ci(f, t) =
B(f, i)G(t, i) denoting the spectrogram of the ith component. The
grouping assignment r(i) ∈ NI

+ links the components to the corre-
sponding sources2.

Note that the overall NMF performance is strongly dependent
on the choice of parameters I , β, αtc and initial matrices B0 and
G0 (refer to Section 4.2). I has also a strong impact on the resulting
bit rate as the rate increases for larger values of I .

2The assignment is computed with knowledge of the original sources by
maximizing the overall separation quality in a hill-climbing manner [9].

4. NMF-ISS ENCODER

4.1. Source NMF Model

It is necessary to distribute the given number of components I over
the available sources to be able to describe the sources Sm with in-
dependent NMF models. First, β-NMF with automatic relevance
determination (β-ARD) [12] is used to estimate the optimal number
of components for each source3 which needs to be computed only
once per mixture. The ratio of these numbers is then used to dis-
tribute I over the sources to obtain the number of components per
source Isrc(m) ∈ NM

+ with
∑

m Isrc(m) = I .
β-NMF is used to factorize each source magnitude spectrogram

Sm into Isrc(m) components independently of the other sources.
The parameters are chosen to match the parameters of the decoder
NMF, apart from the number of components. The basis and gain
matrices describing each source spectrogram are stacked together in
the component dimension in the concatenation-block (denoted with
“C” in Fig. 1) to form Bsrc ∈ RF×I

+ and Gsrc ∈ RT×I
+ which have

the same dimensions as the decoder NMF matrices (cf. Eq. (1)). As
initialization for both β-ARD and source β-NMF, a fixed semantic
initialization is used modelling the spectral behaviour of the 88 piano
keys [9, 13]. A source NMF model is shown in Fig. 2b and 2c for
an exemplary guitar-drum mixture depicted in Fig. 2a. Using NTF
to factorize the sources jointly (as done in e.g. [3]) could result in
components describing multiple sources which would deteriorate the
NMF performance in the decoder.

4.2. Decoder NMF Model Initialization

The source NMF model is used to calculate an initialization for the
decoder NMF (“Init Coding” block in Fig. 1) to enhance the sep-
aration quality of the SBSS algorithm. In the following, we in-
troduce a very compact initialization scheme which can be coded
very efficiently. We assume that it is sufficient to transmit a binary
activity pattern instead of a quantized version of Gsrc, as the de-
coder NMF is able to extract a finer-structured G out of X given
the components activity information. The initial gain matrix G0 is
obtained by simple thresholding of Gsrc in dB with threshold τG0

as G0(t, i) = 1 if G′src(t, i) > τG0 and G0(t, i) = 0 otherwise
with G′src(t, i) = 10 log10(G

2
src(t, i)/maxt,i G2

src(t, i)) denoting
Gsrc in dB. The structure of the resulting binary matrix G0, de-
picted in Fig. 2d, motivates the usage of componentwise run-length

3Compared to β-NMF, β-ARD estimates the relevance of each compo-
nent additionally to B and G. Non-relevant components are discarded. All
additional β-ARD parameters are chosen as proposed as default in [12].
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(a) Mixture spectrogram X.

i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

f
[k
M
el
]

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

(b) Source basis matrix Bsrc.
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(c) Source gain matrix GT
src.

t [s]
0 1 2 3 4 5

i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0

1

(d) Initial gain matrix GT
0 .

Fig. 2. Mixture spectrogram X, source model matrices Bsrc, Gsrc and initial temporal gain matrix G0 for an exemplary guitar-drum mixture.
Components i ∈ [1, 12] correspond to the guitar and i ∈ [13, 17] to the drum recording.

coding [14] and subsequent adaptive arithmetic coding [15] of the
run-lengths.

The initialization for the basis matrix B0 is constructed out of
frames dB0(i) of X for which the ith component is most dominant.
These dominant frames are detected within the temporal gain matrix
Gsrc of the source NMF model

dB0(i) = argmax
t

Gsrc(t, i)/
∑
j 6=i

Gsrc(t, j) (3)

and directly converted to binary numbers as the frame indices are
integer numbers.

After transmission, the initial gain matrix G0 is obtained by
arithmetic and subsequent run-length decoding whereas the domi-
nant frame indices are converted back to integer numbers dB0 at the
decoder side (“Init Decoding” block in Fig. 1). The indices dB0

are then used to construct the initial basis matrix out of the mixture
spectrogram

B0(f, i) = X(f, dB0(i)) . (4)
If the encoder decides to skip the transmission of dB0 , the initial
basis matrix is extracted out of G0 and X with a simple matrix mul-
tiplication or a median operation

B0 = XGT
0 or B0(f, i) = median [X(f,Θ(i))] (5)

with Θ(i) = {t |G0(t, i) > 0} denoting all time frames for which
the ith column of G0 is active.

The encoder tests SBSS with different initializations (different
values of τG0 and initialization schemes for B0) as well as differ-
ent NMF parameters β and αtc without calculating a residual NMF
model and takes the configuration which yields the best SBSS per-
formance. This procedure is denoted in the following as parameter
optimization (PO).

4.3. Residual NMF Model

The encoder calculates a residual NMF model to take possible errors
of the SBSS algorithm in the decoder into account. In the following,
only the calculation for the residual gain matrix is shown as the cor-
responding calculations for the residual basis matrix can be derived
in the same manner. To obtain a residual temporal gain matrix, it is
necessary to align both gain matrices of the NMF source and mix-
ture model. Here, all components are normalized to unit energy. The
residual temporal gain matrix Gres is calculated as

Gres(t, i) = Gsrc(t, i)/EGsrc(i)−G(t, i)/EG(i) (6)

with EGsrc and EG denoting the corresponding energies. In the
decoder, the residuals are obtained by inverse quantization (marked
with a hat symbol) and the NMF model is refined by

G(t, i)← [G(t, i)/EG(i) + Ĝres(t, i)] ÊGsrc(i) (7)

where G is again normalized to unit energy before the refinement
and afterwards normalized by the transmitted energy ÊGsrc . The
refinement of B is done accordingly. The updated NMF model is
then used for synthesis with Eq. (2).

In [3, 6, 5], the source NTF matrices are quantized in the loga-
rithmic domain with scalar quantization. As shown in Section 5, lin-
ear quantization gives better results for quantizing the residual NMF
matrices of NMF-ISS. Here, we use an additional A-law compand-
ing step [14] prior to scalar quantization. The A-law compression
curve mimics logarithmic behaviour for A-law parameter A = 87.5
whereas A = 0 implies linear scalar quantization. The resulting
symbols are coded with adaptive arithmetic coding (as used for the
run-lengths of G0 in Section 4.2).

The transmitted side-information consists of quantized and en-
coded versions of dB0 and G0 for initialization of the decoder NMF
and the residual NMF model Bres, Gres. In case of suboptimal
SBSS performance, the encoder is able to skip the NMF in the de-
coder. In this case, the residual NMF model is equal to the source
NMF model which is then coded as described in Section 4.3. Skip-
ping the decoder NMF is indicated with a flag: skip = 1 (cf. Fig 1).
For very low bit rates, the encoder is also able to not only skip the
transmission of the NMF residuals but of the NMF initialization as
well. In this case, SBSS works completely blind.

5. EXPERIMENTS

5.1. Setup

For evaluation of the proposed method, NMF-ISS is performed on
five monaural mixtures sampled at 44 100Hz taken from the QUASI
database4. The mixtures consist of 3 to 6 sources (e.g. vocals, gui-
tar, drums, effects) and are about 20 s long. As quality measures,
the signal-to-distortion ratio (SDR) calculated using the “BSS Eval”
toolbox [16] and the perceptual similarity measure (PSM) of PEMO-
Q [17] are obtained for each source. The mean measures are calcu-
lated over all sources per mixture in reference to the performance
of an oracle estimator [18] which yields an upper bound for separa-
tion with Wiener-like filtering. The resulting measures are denoted
as δSDR and δPSM respectively and given for bit rate R which is
normalized per source.

Regarding the STFT, we chose a window size of 93ms with
50% overlap and Mel-filtering with F = 400. The encoder is tested
with different numbers of NMF components I normalized per source
I/M ∈ {2, 3, 4, 5, 10, 15, 20, 30} with M denoting the number of
sources. The encoder estimates optimal SBSS parameters at run-
time without calculating the residuals by testing the SBSS algorithm
with combinations of the following parameters: Regarding β-NMF,

4http://www.tsi.telecom-paristech.fr/aao/en/2012/03/12/quasi/



(a) Influence of decoder NMF (either skipped or unskipped) in comparison
with reference [3, 8].

(b) Comparison of quantization and coding schemes: Linear (A = 0) and
logarithmic (A = 87.5) scalar quantization with adaptive arithmetic encod-
ing and scalar quantization in logarithmic domain with Huffman encoding
(“log”) as used in reference method. Optimal parameter estimation disabled
(PO = 0) and decoder NMF skipped (skip = 1) in all cases.

(c) Influence of optimal parameter estimation (PO). In case of disabled pa-
rameter optimization (PO = 0), the decoder NMF is disabled (skip = 1).

Fig. 3. δSDR and δPSM results over bit rate R for NMF-ISS. In-
fluence of SBSS, different quantization schemes and parameter esti-
mation as well as comparison with reference [3, 8].

the β-Divergence and temporal continuity parameters are chosen as
β ∈ {0, 1, 2} and αtc ∈ {0, 25, 50, 100}. The initialization proce-
dure is tested with different thresholds τG0 ∈ {−15,−30,−60}dB
for the calculation of G0 and either transmission of dB0 or calcula-
tion out of G0 as denoted in Eq. (5) for obtaining B0. The opti-
mal NMF and initialization parameter combination is then chosen
as the one with the highest SBSS SDR. After the parameter opti-
mization (PO), residual coding is conducted with different step sizes
for scalar quantization of the NMF residuals. The corresponding
number of quantization bins are calculated as 2QB and 2QG with
QB, QG ∈ [0, 8] bit.

All (R, δSDR) and (R, δPSM) points were optimized per
mixture and I/M independently and then smoothed using the lo-
cally weighted scatter plot smoothing (LOESS) method to obtain
rate/quality curves.

5.2. NMF-ISS performance

Fig. 3a shows results for our algorithm with either skipped or un-
skipped decoder NMF (cf. Fig. 1). In case of skipped decoder NMF
(skip = 1), the full source NMF model is coded and transmitted
(as the residual model contains the full source NMF model). For
lower and midrange bit rates, running the decoder NMF (skip = 0)

yields better results for both δSDR and δPSM than just by coding
the source model as the additional amount of rate spent for the SBSS
initialization is rewarded by a more sparse residual model. In the ex-
treme case of R → 0, SBSS is still able to estimate the sources
with adequate quality. For higher bit rates, encoding only the source
model is sufficient. Note that the encoder is able to skip the decoder
NMF at run-time to make an optimal decision between these two
modes. Additionally, results for the reference implementation [3, 8]
are shown and discussed in the following section.

5.3. Comparison with reference

The reference implementation [3, 8] compresses the source spec-
trograms Sm directly with β-NTF and β = 0. For a fair compar-
ison, NMF-ISS is simulated with a similar parameter and quanti-
zation configuration as the reference method in this section: The
STFT window size is decreased to 46ms and Mel-filtering is dis-
abled. The residuals are quantized with QB = QG = 8bit in loga-
rithmic domain and Huffman encoded (“log”) afterwards. However,
this scheme is only applicable to nonnegative matrices. To cope with
real-numbered residuals when using the decoder NMF (skip = 0),
the aforementioned scheme is replaced with our A-law quantization
and adaptive arithmetic coding scheme (cf. Section 4.3).

Fig. 3b shows results for these different quantization and cod-
ing schemes with skipped decoder NMF (skip = 1). Instead of the
optimal parameter estimation (PO) which is done in the NMF-ISS
encoder to determine optimal decoder parameters (cf. Sec. 4.2), a
fixed NMF parameter setting is used with (β, αtc) = (0, 0) which is
identical to the NTF setup for the reference method and denoted as
PO = 0. Comparing the reference method with NMF-ISS using the
same coding scheme (“log”) shows that the choice of NMF over NTF
comes with a small loss of quality regarding δSDR and an increase
for δPSM. Replacing this scheme with companding and adaptive
arithmetic coding (A = 87.5) results in similar δSDR results for
higher bit rates whereas δPSM is slightly improved. Disabling com-
panding (A = 0) improves the quality significantly for both δSDR
and δPSM and motivates the choice of linear scalar quantization for
the NMF-ISS setup.

The influence of the optimal decoder parameter estimation of
the encoder (cf. Section 4.2) is shown in Fig. 3c. Enabling estima-
tion with (PO = 1) yields a δSDR increase of about 1 dB for all
rates whereas δPSM decreases slightly. Enabling the decoder NMF
(skip = 0) does not improve the quality any further. Comparing
results for the two different STFT window sizes with either Mel-
filtering enabled or disabled shown in Fig. 3a and 3c with PO = 1
shows that Mel-filtering and larger STFT window size results in a bit
rate reduction by a factor of 2 at similar δSDR values.

6. CONCLUSIONS

In this paper, we proposed a novel ISS algorithm, NMF-ISS, which
makes use of an NMF-based semi-blind source separation (SBSS)
algorithm in the decoder. The encoder chooses the optimal initial
NMF parameters and calculates NMF residuals to enhance the sep-
aration quality further. This procedure introduces flexibility as the
encoder is able to skip SBSS or residual coding. We showed exper-
imentally that performing SBSS yields in higher quality at lower bit
rates and show, that NMF-ISS outperforms a reference method.

Future work could include introduction of an additional residual
coding step in the spectrogram domain to be able to yield higher per-
formance than oracle estimators for source separation as well as fur-
ther optimization of residual quantization and coding similar to [19].
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formed source separation using latent components,” in La-
tent Variable Analysis and Signal Separation, pp. 498–505.
Springer, 2010.

[9] Martin Spiertz, Underdetermined Blind Source Separation for
Audio Signals, vol. 10 of Aachen Series on Multimedia and
Communications Engineering, Shaker Verlag, Aachen, July
2012.

[10] Martin Spiertz and Volker Gnann, “Beta divergence for clus-
tering in monaural blind source separation,” in 128th AES Con-
vention, London, UK, May 2010.

[11] Tuomas Virtanen, “Monaural sound source separation by
nonnegative matrix factorization with temporal continuity and
sparseness criteria,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 15, no. 3, pp. 1066–1074, 2007.

[12] Vincent Y.F. Tan and Cédric Févotte, “Automatic relevance
determination in nonnegative matrix factorization with beta-
divergence,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 35, no. 7, pp. 1592–1605, 2013.

[13] Martin Spiertz and Volker Gnann, “Note clustering based on
2D source-filter modeling for underdetermined blind source

separation,” in Proceedings of the AES 42nd International
Conference on Semantic Audio, Ilmenau, Germany, July 2011.

[14] Jens-Rainer Ohm, Multimedia Signal Coding and Trans-
mission, Signals and Communication Technology. Springer-
Verlag Berlin Heidelberg, 2015.

[15] Mark Nelson and Jean-Loup Gailly, The Data Compression
Book, 2nd Edition, M&T Books, New York, 1996.
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