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ABSTRACT
Upmixing consists in extracting audio objects out of their downmix,
given some parameters computed beforehand at a coding stage. It
is an important task in audio processing with many applications in
the entertainment industry. One particularly successful approach for
this purpose is to compress the audio objects through nonnegative
matrix factorization (NMF) parameters at the coder, to be used for
separating the downmix at the decoder. In this paper, we focus on
such NMF methods for audio compression, which operate at very
low parameter bitrates. In existing methods, parameter estimation
and quantization are conducted independently. Here, we propose
two extensions: first, we jointly estimate and quantize the param-
eters at the coder to ensure good reconstruction at the decoder.
Second, we propose a parameter refinement method operated at the
decoder, that benefits from priors induced by quantization to yield
better performance. We show that our contributions outperform
existing baseline methods.

Index Terms—source separation, upmixing, NMF, quantiza-
tion, audio object coding

I. INTRODUCTION
Audio upmixing is the signal processing task that aims at

generating a multichannel signal based on a downmix [1], [2]. It
is an important topic in audio processing, because it allows the
decomposition of downmixes into several audio objects, enabling
numerous applications in the entertainment industry, such as adap-
tive rendering on loudspeakers arrays, karaoke or active listening.

From an audio coding perspective, upmixing can be considered
a classical idea originating from the topic of Spatial Audio Coding
(SAC [3], [4]). In this context, a good strategy appears as trans-
mitting multichannel signals through both a downmix — meaning
less channels to encode — and a few upmixing parameters enabling
good reconstruction of all channels at the decoder. This upmixing
strategy occurs as a core building block of recent spatial audio
coding standards such as SAOC [5] or MPEG-H [6].

Independently from the audio coding community, upmixing
was also early understood in the signal processing literature as a
particular case of source separation, which aims at decomposing
signals into additive components [7]. The main difference with
SAC is that audio separation does not usually assume that the
components to recover are known at any encoding stage, but only
the mixture and some general assumptions such as stereophonic [8]
or spectral diversity [9], [10], [11].

Bridging the audio coding and the source separation communi-
ties, PARVAIX et al. proposed in [12], [13] to consider the extreme
case where source separation could be achieved by parameters
learned from the original audio objects to recover. This scenario
was coined in as Informed Source Separation (ISS) and gave rise to
an important research effort in the following years [14], [15], [16].
The conceptual similarities between ISS and SAOC are very strong,
but it took some years to realize that two communities were in fact
addressing the same exact problem with different methodologies.
The gap was filled when the theory of source coding was applied in
the particular setting of ISS to yield the Coding-based ISS (CISS)
framework [17], [18], [19].

Although very good systems are available at bitrates around
5 kbps/object with CISS, designing very low bitrate ISS/SAOC
working at bitrates close to or under 1 kbps/object remains a
challenge. As demonstrated in [14], existing systems fall short at
providing efficient solutions in this regime. In this respect, the
baseline method [20], [21], [22] exploits a Nonnegative Tensor
Factorization model (NTF [23], [24]) that proves effective in
concisely encoding the power spectral densities of the sources,
to be used for Wiener filtering at the decoder with a bitrate of
around 1 kbps/object. A particularity of these systems is that the
computations at the decoder are very simple and can be achieved
in real time. However, it was shown in recent studies [25], [26]
that whenever the decoder has some available computing resources,
the bitrate could be dramatically reduced again. The idea here is to
proceed to classical blind separation at the decoder, using only very
crude binary versions of the optimal parameters as an initialization
provided by the coder. The resulting system is capable of reaching
bitrates as low as 0.5 kbps/object, with reasonable performance.

In this study, we go further in this direction of enhanced
compression for audio upmixing/ISS. The main idea of this paper
is to consider the quantization of the parameters already in the
design of their estimation strategy. In practice, this is achieved by
including further constraints for the NTF. Such constraints already
have a rich history and were used to yield e.g. sparse [27] or
smooth decompositions [28], [29]. Here, our contributions are two-
fold. First, we propose a self-quantizing constraint for the NTF that
leads to parameters that both account for the signals while being
maximally quantized already. This provides consistent increases of
performance compared to posterior quantization applied after the
learning, as done in most ISS studies [20], [21], [18]. As in [25],
our second contribution exploits the computing capabilities of the
decoder to fit the parameters again, on the mixture only, before
applying upmixing. Instead of simply considering an initialization
as in [25], we exploit quantization again and propose another
new constraint called quantized-matching. Its idea is to fit NTF
parameters at the decoder so that they best describe the mixture,
additionally making sure that their quantized version matches the
quantized parameters transmitted by the coder. As we advocate,
this is more efficient than a simple initialization for which the
parameters are free to strongly deviate from what we know was a
good value at the coder. The result is an improvement in upmixing
quality at no cost in bitrate.

This paper is structured as follows. In Section II, we present
the baseline ISS systems [21], [25] on which we improve. In Sec-
tion III, we present the self-quantizing and quantization-matching
cost functions we are proposing for NTF. Finally, we evaluate the
impact of using them for upmixing in Section IV.

II. PARAMETRIC AUDIO UPMIXING

II-A. Notations and general architecture

In this study, the complex Time-Frequency Representations
(TFR) of the J sources and of the mixture are denoted sj (f, t)
and x (f, t) =

∑
j sj (f, t), respectively. The sources are taken as



Cauchy-harmonizable processes [30], which is a generalization of
the classical Gaussian case [31]:

sj (f, t) ∼ Cc (Pj (f, t)) ,

where Cc is called the complex isotropic Cauchy distribution [32],
[33]. Pj (f, t) is called here the Magnitude Spectral Density (MSD)
of source j at Time-Frequency (TF) bin (f, t). It is a nonnegative
quantity accounting for the scale of source j at that TF bin.

Under this model and given all the MSDs Pj , it can be shown
that each source j can be estimated using its posterior expectation
given the mixture through 1-Wiener filtering [30] as:

ŝj (f, t)← E [sj (f, t) | x, Pj ] =
Pj (f, t)∑
j′ Pj′ (f, t)

x (f, t) . (1)

Just like their Gaussian Power Spectral Density (PSD) counter-
parts, the MSDs are theoretical objects never observed in practice.
Given sj and x, we define the 1-spectrograms Vj and Vx as
empirical estimates, that can roughly be understood as equal in
average to Pj and Px, respectively [34]:

Vj (f, t) , |sj (f, t)| ≈ Pj (f, t) and

Vx (f, t) , |x (f, t)| ≈ Px (f, t) ,

where , stands for a definition. Setting an nonnegative tensor
factorization (NTF) parameter on the source MSDs, we write:

Pj (f, t | Θ) ,
K∑
k=1

W (f, k)H (t, k)Q (j, k) , (2)

where W , H , and Q are F ×K, T ×K and J ×K nonnegative
matrices, respectively, all gathered under the general notation Θ =
{W,H,Q}. Depending on the strategy used for estimation, Θ can
bear subscripts or additional decorations as in Θ̄. In any case, these
all pertain to NTF parameters.

Then, given some NTF parameters Θ, the 1-Wiener filter (1)
becomes:

ŝj (f, t)← E [sj (f, t) | x,Θ] =
Pj (f, t | Θ)∑
j′ Pj′ (f, t | Θ)

x (f, t) , (3)

where the MSD used is the one given in (2).
The baseline ISS method based on NTF [21] consists of two

stages: In the encoder, the sources sj are perfectly known and used
for computing compact parameters Θs. These parameters are then
transmitted to the decoder in a quantized form Θ̄s. At the decoder-
side only the downmix x is available. The sources are estimated
as E

[
sj (f, t) | x, Θ̄s

]
. A recent variation over this scheme was

introduced in [25] and is used here as a second baseline. The NTF
parameters Θ̄s received at the decoder are refined to recover from
the very coarse quantization of Θs by exploiting the mixture only.

II-B. Parameters estimation at coder
Both baseline algorithms [21], [25] use NTF learning on the

source spectrogram Vj to get the source NTF parameters Θs.
Here, we use NTF with multiplicative update rules minimizing the
β-divergence between the spectrograms Vj and their approxima-
tion (3):

dβ (Vj | Θs) ,
∑
f,t

dβ (Vj (f, t) | Pj (f, t | Θs)) . (4)

The β-divergence includes e.g. Itakura-Saito distance (β = 0),
Kullback-Leibler divergence (β = 1) and Euclidean distance
(β = 2). The gradient of the reconstruction cost dβ (Vj | Θs) with
respect to one NTF source parameter, e.g. Ws, can be expressed
as follows

∇Wsdβ (Vj | Θs) = ∇+
Ws
dβ (Vj | Θs)−∇−

Ws
dβ (Vj | Θs) (5)

with ∇+
Ws
dβ (Vj | Θs) and ∇−

Ws
dβ (Vj | Θs) both nonnegative

terms. The corresponding multiplicative update rule for Ws then
depends on these positive and negative gradient terms:

Ws ←Ws ·
∇−
Ws
dβ (Vj | Θs)

∇+
Ws
dβ (Vj | Θs)

. (6)

The same derivation can be conducted for the other NTF parameters
Hs and Qs. The update rules for all parameters are given in
detail e.g. in [21]. Note that the overall NTF performance strongly
depends on the choices of the initial parameters.

The quantization of the source parameters is conducted after pa-
rameter estimation by NTF in the logarithmic domain as proposed
in e.g. [18], [21]:

W̄s , exp (q (logWs)) (7)

with all operations performed element-wise. We use scalar quanti-
zation q (·) on each element of the NTF parameters independently
(see Section III-A). The quantized versions all parameters, H̄s and
Q̄s, are obtained the same way.

II-C. Parameters (re-)estimation and upmixing at decoder
The NTF parameters Θs describing the sources are quan-

tized and transmitted to the decoder as Θ̄s. The decoder of
the first baseline algorithm [21] simply estimates the sources
as E

[
sj (f, t) | x, Θ̄s

]
in (3). The second baseline scheme [25]

proposes an additional so called mix NTF step occurring at the
decoder with only the mix spectrogram Vx as observation. In
this setup, the transmitted parameters Θ̄s are not used for Wiener
filtering directly but only for initialization of the mix NTF instead.
The rationale of the method is that parameters initialized close
to their true values should converge to the right solution while
correctly describing the mix.

This procedure yields new NTF parameters Θx at the decoder
(not to be confused with the source parameters Θs) that are used
to recover the sources as E [sj (f, t) | x,Θx]. Note that this allows
for very coarse quantization of Θ̄s leading to very low bitrates.
Refinements include allocating additional bitrate to the difference
between Θs and Θx or to information guiding the mixture NTF as
in [26]. These refinements are not considered in the present study.

III. QUANTIZATION-AWARE ESTIMATION
In Section III-A, we propose a derivable approximation to the

scalar quantization curve. In Section III-B, we propose a constraint
on the source NTF allowing simultaneous parameter estimation and
quantization. In Section III-C, we propose a constraint on the mix
NTF which prevents the estimated parameters from deteriorating
from the quantized initialization parameters.

III-A. Quantization and a derivable approximation
For decreasing the parameter bitrate, quantization of the NTF

parameters is needed. As previously done in NTF-based ISS
algorithms e.q. [20], [21], [22], [25], we use scalar quantization
of each entry of the NTF parameter matrices. Scalar quantization
maps continuous scalar values z to a discrete set of N values,
here denoted as reconstruction values q (z). The reconstruction
values are obtained in this paper by the Lloyd-Max algorithm (refer
e.g. to [35]) minimizing the squared error between the continuous
values z and the reconstruction values q (z). This procedure results
in N non–uniformly spaced reconstruction values. The distance
between two reconstruction values is denoted with the step size ∆
(which differs for different pairs of reconstruction values) as shown
for an exemplary quantization curve q (z) in Fig. 1a.

For incorporating quantization in the NTF update rules, we
need an approximation of q(z) by a derivable function. Here we
use a logistic function f0 (z) to approximate q (z) between two
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Fig. 1: Hard and soft quantization curves as well as histograms
(normalized to interval [0, 1]) for the proposed SQ constraint.

reconstruction values (interval is marked in Fig. 1a with dotted-
dashed lines). This yields the soft quantization curve f (z)

f (z) = z0 +
∆

d

[
1

1 + exp
(
−λ 2

∆
(z − z0)

)︸ ︷︷ ︸
=f0(z)

−1

2

]
(8)

with midpoint of the logistic function centered between two re-
construction values z0 = q (z) + ∆

2
sgn (z − q (z)) and steepness

parameter λ. The factor d = 1
1+exp(−λ)

− 1
1+exp(λ)

scales f0 (z)
to ensure continuity at the corner points (lower and upper recon-
struction value). The derivative of f (z) can be expressed as

∂f (z)

∂z
=

2λ

d
f0 (z) [1− f0 (z)] . (9)

Fig. 1a shows the scalar quantization curve q (z) as well as our
proposed approximation function f (z) with midpoint z0, steepness
parameter λ = 5 and step size ∆ = 4.

III-B. Self-quantization at coder
As explained in Section II-B, the two baseline systems learn NTF

parameters Θs describing the source spectrograms Vj and quantize
the parameters as a posterior step to yield Θ̄s. In this section,
we propose a novel NTF constraint which accounts for both good
signal approximation and quantization of the parameters at the same
time. We enforce the parameters Θs to be close to their quantized
version Θ̄s at NTF run-time. The overall cost function for the NTF
with the proposed self-quantizing constraint (SQ) consists of the
signal reconstruction term dβ (Vj | Θs) as given in Eq. (4) as well
as the β-divergence between the parameters and their quantized
versions W̄s, H̄s which we assume constant for each NTF iteration

min dβ (Vj | Θs) + γsq

[
dβ
(
W̄s |Ws

)
+ dβ

(
H̄s | Hs

)]
. (10)

The self-quantizing constraint on Ws and Hs is weighted with
scalar factor γsq ≥ 0 and added to the signal reconstruction term
dβ (Vj | Θs). Setting γsq = 0 implies an NTF which only accounts
for the signal Vj .

As shown in Section II-B in Eq. (5) for the reconstruction term,
the gradient of the constraint cost has to be split up into positive
and negative terms to yield the corresponding multiplicative update
rules accounting for the constraint. These terms corresponding to
the SQ constraint for Ws are given in the first column of Table I.
The gradient is equivalent for Hs. Qs has only few elements
compared to Ws and Hs, so we quantize Qs with high resolution
after the NTF and thus do not consider it for the self-quantizing
constraint.

To show the impact of SQ, Fig. 1b depicts histograms of
logWs (as we quantize in the logarithmic domain) for two
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Fig. 2: Block diagram of proposed coder consisting of the decoder.

scenarios: The upper plot in Fig. 1b shows the distribution of
log (Ws) for an unconstrained source NTF in the coder as well
as quantization reconstruction levels (marked with crosses) of the
posterior quantization step. The lower plot shows the distribution
for another NTF on the same sources with SQ activated. SQ shifts
the parameter values in direction of the reconstruction values as
the corresponding distribution is closer to the quantized version
compared to unconstrained NTF.

III-C. Quantized-matching at decoder
The ISS scheme proposed in [25] uses a second NTF on the

mixture at the decoder refining the quantized source parameters Θ̄s.
Taking Θ̄s as initialization, the decoder NTF may still deviate from
the optimal source parameters Θs as only few quantization levels
for Θ̄s are usually used. However, Θ̄s is the (coarsely) quantized
version of the interference-free parameters Θs which the mix NTF
should try to get back to. To prevent the mix NTF from deviating
too much, we propose to put constraints on the mix parameters
Θx in the quantization domain: The quantized version of Θx shall
match Θ̄s as much as possible. Constraining Θx itself would result
in an unnecessary quantization of Θx: We want to learn Θx with
full resolution that gets close to Θ̄s only when it is quantized.

To be able to derive NTF update rules for this quantized-
matching constraint (QM) with regard to one parameter, e.g. Wx,
we replace the (hard) quantization curve q (·) as used in (7) by
the soft quantization curve f (·) proposed in Section III-A to yield
what we call soft-quantized parameters

W̃x , exp (f (logWx)) . (11)

The novel mix NTF cost function then consists of the signal
estimation term dβ (Vx | Θx) as well as the quantized-matching
constraint which favors soft quantized parameters being close to
the quantized source parameters:

min dβ (Vx | Θx) + γqm

[
dβ
(
W̄s | W̃x

)
+ dβ

(
H̄s | H̃x

)]
(12)

with W̄s, H̄s being constant. Again, the constraint is weighted
with a scalar factor γqm ≥ 0 as done already for Eq. (10). The
corresponding positive and negative gradient terms are summarized
in the third column of Table I. The terms for QM are dependent on
the positive and negative terms for the gradient of the soft-quantized
parameter (11) which are given in the second column of Table I.
The later terms are derived from (9). Once again, since Qs is very
small, we send it in full resolution and simply set Qx = Qs.

III-D. Complete system
The complete system is shown in Fig. 2. The basic structure

resembles the structure of the ISS method described in [25]. Here
we augment the NTFs with our proposed constraints: The self-
quantized (SQ) constraint is used for obtaining the source NTF
parameters Θs in the encoder. The quantized parameters Θ̄s are
used for initialization of the NTF describing the mixture with
parameters Θx in the decoder. This mixture model is estimated with
quantized-matching (QM) constraint to ensure that quantized Θx

matches Θ̄s. The estimated sources ŝj are obtained by 1-Wiener-
filtering mixture x. For comparison with reference method [21],
Wiener-filtering can be performed with Θ̄s directly instead of Θx.
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∇+
Ws

dβ
(
W̄s |Ws

)
= Wβ−1

s ∇+
Wx

W̃x = 2λ
d
f0 (logWx) · W̃x

Wx
∇+
Wx

dβ

(
W̄s | W̃x

)
= ∇+

Wx
W̃x · W̃β−1

x +∇−
Wx

W̃x · W̄s · W̃β−2
x

∇−
Ws

dβ
(
W̄s |Ws

)
= W̄s ·Wβ−2

s ∇−
Wx

W̃x = 2λ
d
f2
0 (logWx) · W̃x

Wx
∇−
Wx

dβ

(
W̄s | W̃x

)
= ∇−

Wx
W̃x · W̃β−1

x +∇+
Wx

W̃x · W̄s · W̃β−2
x

Table I: Positive and negative gradient parts for the SQ (Section III-B) and QM (Section III-C) constraints to be used for multiplicative
update rules as in Eq. (6). a · b and a

b
stand for element-wise multiplication and division of matrices a and b of the same dimension.

IV. EVALUATION
IV-A. Data-set and metrics

For evaluation of the proposed self-quantizing (SQ) and
quantized-matching (QM) constraints, we took 10 mixtures con-
sisting of 4 – 7 sources (e.g. vocals, guitar, drums, effects) of the
QUASI database1. Each mix is sampled at 44100 kHz and is 30 s
long. Separation performance is given by the signal-to-distortion
ratio (SDR, in dB) between original and estimated sources. After
taking the mean over the sources, the resulting SDR value is set in
reference to the SDR obtained by an oracle estimator [36] which
estimates optimal Wiener filter masks. The resulting measure is
denoted with δSDR. The parameter bitrate R is obtained with
GZIP on Θ̄s as done in e.g. [21] and measured in kbps per source.
Additionally, we measured the reconstruction quality of either the
quantized source parameter Θ̄s or the refined mix parameters Θx

by evaluating dβ (Vj | Θs) or dβ (Vj | Θx).
Regarding the Time-Frequency transform, we chose the STFT

window size to 93 ms with 50 % overlap. The spectral dimension
of the spectrograms is filtered with a Mel-filterbank with F = 400
Mel-filters [11]. We evaluated the proposed constraints with differ-
ent numbers of NTF components per source K/J ∈ {1, 2 . . . 10}
with J number of sources and β = 1 (Kullback–Leibler di-
vergence). We use an SVD-based method [37] to initialize the
source NTF. The SQ and QM constraints are either deactivated or
activated with scalar weights γsq, γqm ∈

{
10−1, 1, 10, 102

}
. For

QM, the soft quantization steepness is set to λ = 5. The source
parameters are quantized with different numbers of quantization
bins N ∈ {2, 3, 4}. Note that K/J and N have both strong
influence on the overall parameter bitrate R.

For each mixture, each combination of parameters (K/J , N ,
γsq and γqm) results in a (R, δSDR)-point. These points are then
optimized to yield the Pareto front per mixture and finally smoothed
using the locally weighted scatter plot smoothing method [38],
obtaining rate/quality curves. The same procedure is done for all
(R, dβ) points.

IV-B. Experiments and discussion
Fig. 3a shows (R, δSDR) curves for the two baseline algorithms

and the proposed constraints: Performances of the (unconstrained)
reference methods [21] and [25] (solid and dashed blue curves) are
compared to the methods with activated SQ and/or QM constraints.
As [21] uses solely Wiener filter in the decoder, activating QM is
not possible. Several noticeable facts come out of this evaluation:

(i) SQ doesn’t prove very useful as soon as mix NTF [25] is
enabled. However, it strongly improves performance of [21] for
lower bitrates (> 0.5 dB) and even permits bitrates that are slightly
lower. Proceeding jointly to parameter estimation and quantization
hence really proves effective in bringing increased performance at
no additional cost in bitrate. (ii) For extremely low-bitrates, un-
der 0.1 kbps/source, SQ permits the very computationally efficient
method [21] to outperform the more demanding [25] that requires
computations at the decoder. (iii) QM significantly improves the
performance of mix NTF, at all bitrates. This is a very interesting
result because it means this constraint succeeds in bringing Θx

1http://www.tsi.telecom-paristech.fr/aao/en/2012/03/12/quasi/.
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Fig. 3: Rate-quality curves for the two baseline methods [21]
and [25] in comparison to the proposed SQ and QM constraints.
[21] uses quantized source parameters Θ̄s, [25] refined mix param-
eters Θx for synthesis.

much closer to Θs. For bitrates above 0.1 kbps/source, incorporat-
ing QM brings a remarkable 1 dB improvement on performance.
Additional SQ gives slightly increased performance again.

This first evaluation concerned the final quality of the separation
result. In a second evaluation, we focused on the reconstruction
quality dβ (Vj | Θ) given in Eq. (4) of the source spectrogram Vj
using various sets of parameters either Θ = Θ̄s (used in [21]) or
Θ = Θx (used in [25]) obtained by activating or not SQ and QM.
Fig. 3b shows the corresponding (R, dβ) curves. Comparing the
two solid curves (performance of Θ̄s with deactivated and activated
SQ) it becomes clear that the quantized source NTF model Θ̄s

with SQ yields much better reconstruction than using a posterior
quantization step (10 % smaller dβ-value). This is an important
result as it is independent of the ISS setup and usable in any
applications where quantized NTF parameters are needed. Then,
refining Θ̄s by the mix NTF [25] as well as activating QM decreases
the β-divergence each time even further, taking now Θ = Θx. This
second evaluation suggests that the proposed methods do behave as
expected concerning the cost functions that are being minimized.
The discrepancies between Figures 3a and 3b thus indicate that it
may be appropriate to focus on better cost-functions for fitting the
parameters than the Kullback–Leibler divergence used here.

V. CONCLUSION
We proposed two novel constraints for Nonnegative Tensor

Factorization (NTF) in an Informed Source Separation (ISS) setup.
First, the self-quantizing constraint (SQ) in the ISS encoder leads
simultaneously to good signal approximation and quantized param-
eters. This constraint may be useful whenever NTF is used for
signal compression, not only for upmixing. Second, the quantized-
matching constraint (QM) in the decoder NTF prevents deviations
from the (optimal) source NTF parameters in the quantization do-
main. Both constraints were evaluated and outperformed reference
methods.

Future work could include iterating between encoder and de-
coder, thus refining the source model given the mix model and
vice versa. The influence of weights and parameters on the non-
convex SQ and QM cost functions could be studied as well as the
usage of an SQ-constrained NTF in a blind source separation setup.
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