QUANTIZATION-AWARE PARAMETER ESTIMATION FOR AUDIO UPMIXING

Christian Rohlfing¹, Antoine Liutkus², Julian M. Becker¹

¹Institut für Nachrichtentechnik, RWTH Aachen University ²Inria, speech processing team, Villers-lès-Nancy, France

Introductio	n		
Downmix Sources	Extra	ction	
	Side	information	Encoder
		·	Decoder

Parametric Audio Upmixing

- Parametric audio upmixing consists of two steps:
- Encoder: Sources and downmix perfectly known. Prior work [1], [2] use
- Nonnegative Tensor Factorization on source spectrogram V_i which computes parameters Θ_s
- subsequent scalar quantization of parameters Θ_s .

Audio upmixing

- aims at generating a multichannel signal based on a downmix
- is research topic in both audio coding and audio source separation communities
- enables numerous applications, such as adaptive rendering on loudspeakers arrays, karaoke or active listening.

• **Decoder**: Only downmix x available.

- -[1]: Sources are estimated with Wiener-filtering given downmix and $\overline{\Theta}_s$.
- -[2]: Additional NTF with mix spectrogram V_x as observation. Resulting parameters Θ_x used for Wiener-filtering. Initialization of NTF with Θ_s .

Here: Consider quantization of parameters already in design of their (re-)estimation strategy.

Self-quantization at Encoder

[1], [2]: NTF on sources and quantization of resulting parameters as two *independent* steps.

Combination of signal approximation and quantization of parameters at run

Quantized-matching at Decoder

[2]: Decoder NTF is initialized with (coarsely) quantized Θ_s . Θ_x may deviate from target Θ_s too much.

Quantized-matching NTF:

Estimate sources parameters from mix only, constraining them to have same quantization as transmitted values Θ_s .

Quantized version of Θ_x shall match Θ_s as much as possible.

 $\min \ d_{\beta} \left(V_{x} \mid \Theta_{x} \right) + \\ \gamma_{qm} \left[d_{\beta} \left(\bar{W}_{s} \mid \tilde{W}_{x} \right) + d_{\beta} \left(\bar{H}_{s} \mid \tilde{H}_{x} \right) \right]$

with $\tilde{W}_x \triangleq \exp(f(\log W_x))$, $\tilde{H}_x \triangleq \exp(f(\log H_x))$

Experiments

Ten mixtures (4 to 7 sources, taken from QUASI database [3]). NTF minimizes Kullback-Leibler divergence ($\beta = 1$) with number of components per source $\in \{1, 2 \dots 10\}$ and weights

- Self-quantizing constraint (SQ) leads simultaneously to good signal approximation and parameter quantization.
- SQ not limited to audio upmixing and may be useful when-

[1] A. Liutkus, J. Pinel, R. Badeau, L. Girin, and G. Richard, "Informed source separation through spectrogram coding and data embedding," Signal Processing, vol. 92, no. 8, pp. 1937 – 1949, 2012. [2] C. Rohlfing, J. M. Becker, and M. Wien, "NMF-based informed source separation," in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar. 2016, pp. 474 – 478. [3] QUASI Database – A musical audio signal Database for Source Separation. http://www.tsi.telecom-paristech.fr/aao/en/2012/03/12/quasi/

rohlfing@ient.rwth-aachen.de

www.ient.rwth-aachen.de

ICASSP 2017

Institut für Nachrichtentechnik, Melatener Str. 23, 52074 Aachen