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ABSTRACT
Informed source separation (ISS) uses source separation for extract-
ing audio objects out of their downmix given some pre-computed
parameters. In recent years, non-negative tensor factorization (NTF)
has proven to be a good choice for compressing audio objects at an
encoding stage. At the decoding stage, these parameters are used
to separate the downmix with Wiener-filtering. The quantized NTF
parameters have to be encoded to a bit stream prior to transmission.

In this paper, we propose to use context-based adaptive binary
arithmetic coding (CABAC) for this task. CABAC is widely used
in the video coding community and exploits local signal statistics.
We adapt CABAC to the task of NTF-based ISS and show that our
contribution outperforms reference coding methods.

Index Terms—source separation, NMF, CABAC, arithmetic
coding, audio object coding

I. INTRODUCTION
Informed source separation (ISS) [1], [2] is a research topic

bridging the areas of source separation and audio object coding.
ISS consists of two stages: at the encoder, the audio objects,
here recordings of single instruments, singing voice or effects, are
perfectly known and used to compute a compact set of parameters
which is transmitted to the decoder. Here, only the downmix of the
audio objects is available. The transmitted parameters are used to
assist a source separation step, estimating the audio objects given
the downmix. This procedure enables numerous applications such
as active listening or karaoke and is independent of the loudspeaker
setup at the user side. Spatial Audio Object Coding (SAOC) [3] is
a main building block of the recently proposed MPEG-H 3D Audio
standard [4] which provides similar functionality. SAOC yields a
parameter bit rate close to 3 kbps/object.

The baseline ISS method [5] models the spectrograms of the
objects with non-negative tensor factorization (NTF) [6] and uses
Wiener-filtering to separate the sources at the decoder yielding bit
rates around 1 kbps/object. A recent variation of this method [7],
[8] introduces a more complex decoding scheme as it uses a second
NTF block in the decoder to refine coarsely quantized parameters
and yields bit rates of around 0.5 kbps/object. Similar bit rates
are obtained by the compressive sampling-based approach of [9].
Few source samples are selected randomly at the encoder. At
the decoder, these samples are used for model estimation with
NTF. [10], [11] combine NTF-based ISS and high-rate waveform
coding, called the Coding-based ISS framework which is not bound
by oracle estimators [12] anymore and leads to high separation
quality with bit rates around 5 kbps/object. In contrast to the
aforementioned methods, [13] is not using Wiener-filtering at all
but encodes magnitude and phase spectrograms of the audio objects
independently. However, NTF is used for magnitude modeling.

For encoding the quantized NTF parameters to a bit stream,
different choices of encoding algorithms were made in prior work:
Huffman coding (HC) [14] of the NTF parameters is used e.g.
in [13]. In [5], this is achieved by GZIP which uses LZ77 in com-
bination with HC [14]. The methods in e.g. [7], [10] use arithmetic

Max Bläser and Christian Rohlfing are co-first authors.

coding which encodes sequences of symbols more efficiently than
HC [14], [15]. In this paper, we propose to use the very efficient
context-based adaptive binary arithmetic coding (CABAC) [16]
which is widely used in the video coding community, e.g. in
High Efficiency Video Coding (HEVC) [17]. CABAC is able to
approach conditional entropy by exploiting dependencies within
the signal’s statistics. We show how to adapt this method to encode
NTF parameters more efficiently than the aforementioned reference
methods by proposing suitable contexts for NTF matrices.

This paper is structured as follows: In Section II, we present the
baseline ISS system [5] on which we improve. In Section III, we
summarize the CABAC scheme. In Section IV, we present contexts
designed for coding the ISS parameters with CABAC. Finally, we
evaluate the impact of using CABAC for ISS in Section V and
summarize our contribution in Section VI.

II. NON-NEGATIVE-FACTORIZATION-BASED
INFORMED SOURCE SEPARATION

The baseline ISS method [5] based on non-negative tensor
factorization (NTF) consists of two stages: In the encoder, the
sources are perfectly known and used for computing compact
parameters with NTF. These parameters are quantized, encoded to
a bit stream and then transmitted to the decoder. At the decoder
side only the mix and the compressed parameters are available. The
parameters are decompressed from the bit stream and the sources
are finally estimated with Wiener-filtering.

II-A. Parameters estimation and coding at encoder
The complex time-frequency representations of the J sources

and of the mixture are denoted as Sj and X respectively, with one
particular time-frequency (TF) bin sf,t,j and xf,t =

∑
j sf,t,j re-

spectively. The magnitude of the source at TF bin, sf,t,j =
∣∣sf,t,j∣∣,

may be approximated by NTF with

sf,t,j ≈ ŝf,t,j (Θ) =

K∑
k=1

wf,kht,kqj,k, (1)

where W, H, and Q are F ×K, T ×K and J ×K non-negative
matrices and gathered as Θ = {W,H,Q}. Here, we use NTF with
multiplicative update rules minimizing the β-divergence between
the spectrogram Sj and the approximation given by Equation (1):

dβ (Sj | Θ) ,
∑
f,t

dβ (sf,t,j | ŝf,t,j (Θ)) . (2)

The β-divergence includes e.g. Itakura-Saito distance (β = 0),
Kullback-Leibler divergence (β = 1) and Euclidean distance
(β = 2). The corresponding multiplicative update rules for all
parameters W, H and Q are given in detail e.g. in [5], [18]. Note
that the overall NTF performance strongly depends on the choices
of the initial parameters as well as the number of components K.

Applied on audio spectrograms, the NTF parameters can be
interpreted as follows. As given in (1), NTF factorizes the input
TF bin sf,t,j into a sum of K components. W consists of K



Conditions n ≤ NLBP n > NLBP

– bf−1,k
n = 0 bf−1,k

n = 1 –

Context Selection ctxn,na ctxn,up0 ctxn,up1 ctxrst

Context Initialization p
(
bf,kn = 0

)
p
(
bf,kn = 0 | bf−1,k

n = 0
)

p
(
bf,kn = 0 | bf−1,k

n = 1
)

p
(
bf,kn = 0

)
Table I: Proposed conditional context selection and initialization for bin bf,kn at position n of bin-string bf,k.

5 10 15 20

50

100

150

200

250

300

350

400

0

1

2

3

4

5

6

7

5 10 15 20

10

20

30

40

50

60

70

80

90

100
0

1

2

3

4

5

6

7

Fig. 1: Quantization indices G and G
′

corresponding to W and H
for an exemplary guitar drum mixture with K = 20 components
and NQ = 8 quantization intervals.

spectral basis functions (one for each component) and H holds the
corresponding temporal activations. The activity of each component
in each source is stored in Q.

For transmission, quantization of the source parameters is con-
ducted after parameter estimation by NTF in the logarithmic
domain as proposed in [5], [10] using scalar quantization q (·) on
each element independently:

[G,c] , q (logW) , (3)

where the NQ×1 vector c denotes the NQ corresponding quantiza-
tion centroids. The F ×K matrix G consists of the corresponding
integer-valued quantization indices with 0 ≤ gf,t ≤ NQ − 1. The
quantized version of H is obtained in the same way. Exemplary
matrices are shown in Figure 1. Q only has few elements compared
to W and H. Here, we focus only on the costly coding of W and
H and quantize Q with high resolution in the linear domain.

In [5], the quantization indices of W and H are fed into the
GZIP algorithm1. In this paper, we propose to use context-based
adaptive binary arithmetic coding (CABAC) instead in Section III.

II-B. Source reconstruction at decoder
The NTF parameters Θ describing the sources are quantized and

encoded to a bit stream. At the decoder, the quantization indices
and centroids are extracted out of the bit stream by decoding. The
inverse quantization operation

w̄f,k = ci, i = gf,k + 1, with 1 ≤ i ≤ NQ

yields the reconstructed matrix W̄; H̄ is obtained accordingly.
All reconstructed matrices are gathered under Θ̄, including recon-
structed Q̄ which we encode as well as the quantization centroids
as single precision floats with GZIP.

The mix X is assumed to be available at the decoder. Given Θ̄,
the estimated sources S̃j are obtained by Wiener-filtering [19]
where ŝf,t,j (Θ) is given in (1):

s̃f,t,j ← E
[
sf,t,j | xf,t, Θ̄

]
=

ŝf,t,j
(
Θ̄
)∑

j′ ŝf,t,j′
(
Θ̄
) xf,t. (4)

1https://www.gnu.org/software/gzip/

III. CONTEXT-BASED ADAPTIVE BINARY
ARITHMETIC CODING

Context-based adaptive binary arithmetic coding (CABAC) is
used for entropy coding in state of the art video compression
standards, such as H.264/AVC [16] and its successor HEVC [17].
CABAC combines adaptive arithmetic coding (AAC), allowing the
assignment of non-integer numbers of bits to source symbols, with
modeling of higher order dependencies within the source statistics.
In contrast to AAC which only tracks the global (non-binary) sym-
bol distributions, CABAC exploits the typically lower conditional
entropy by adapting to local conditional symbol probabilities for
even higher compression performance. The CABAC engine, also
called the M-coder, is a normative part of HEVC and provides high
coding throughput due to its multiplication free implementation.

In CABAC, the core steps of interval subdivision and probability
update of AAC are only performed for a binary source. Thus, each
non-binary source symbol g is binarized using a prefix-free code
C (·), resulting in a bin-string b

b = C (g) = (b1, . . . , bn, . . . , bNC)> . (5)

Each bin-string, an NC × 1 vector, may consist of a variable
number NC of individual bins bn which can each assume the
value of ’0’ or ’1’. It is clear that depending on the binarization
method and the distribution of non-binary source symbols, bin-
strings of vastly different length and distributions of ’0’s and ’1’s
may result. Thus, the initial binarization should correctly map to
the initial distribution of the source which is in turn depending on
the quantizer setting. For sources of geometric symbol distribution,
typical binarizations are Truncated Unary (TU) or Exponential
Golomb (EG) codes. For more information, we refer to [20].

As mentioned before, CABAC adapts to local conditional statis-
tics of the input. CABAC uses contexts to model states of informa-
tion (e.g. already coded bins) in the context modeler. Each context
maps uniquely to one particular state of information which has to
be at hand both at encoder and decoder. The probability for the
value of a current bin bn to be en- or decoded is estimated by
the conditional probability for the value of bn given the selected
context, p (bn | ctx) which is then used for binary arithmetic
coding (BAC) of bin bn. Here, the probability given by the selected
context and the bin value is used to perform the necessary interval
subdivision. After en- or decoding bn, the probability model for
ctx is updated with the value of bn. Typically, multiple contexts
are associated with a particular bin, each modeling a different
probabilistic belief. In the actual coding step however, only a single
context is chosen and updated. Contexts are commonly designed
based on the bin position or the value of the preceding symbol or
bin which represents the belief about the value of the current bin
given the value of the neighboring bin. This conditional probability
modeling is directly motivated by the underlying structure of the
data [16].

In practice, CABAC uses an efficient way to model p (bn | ctx)
using a finite state machine with 64 discrete probability states for
each context [20]. CABAC offers another coding engine next to
BAC, the faster bypass engine which is used to encode bins with
nearly equiprobable distribution in HEVC [20] such as sign flags.
Since such bins are not regarded in our approach, the bypass engine
is deactivated and not further explained.



f gf,3 C
(
gf,3

) Selected contexts for bin bf,3n

n = 1 n = 2 n = 3 n > 3

1 0 0 ctx1,na – – –
2 0 0 ctx1,up0 – – –
3 6 1111110 ctx1,up0 ctx2,na ctx3,na ctxrst
4 2 110 ctx1,up1 ctx2,up1 ctx3,up1 –
5 6 1111110 ctx1,up1 ctx2,up1 ctx3,up0 ctxrst

Table II: Context selection for each bin bf,kn of bin strings bf,k =
C (gf,k) given the third component (k = 3) of exemplary G shown
in Figure 1 with 1 ≤ f ≤ 5, and NLBP = 3.

IV. CONTEXT MODELING FOR NTF PARAMETERS
The structure of our entropy coding scheme using CABAC

is depicted in Figure 2b. Input to the coding stage are non-
negative valued matrices. In the following, we show the encoding
process for W. The same scheme is used for H and the bit
streams for both matrices are finally concatenated. The matrix
elements are first quantized to integer numbers as described in
Section II-A. As CABAC requires a binary input, each element of
matrix G is subject to a binarization, resulting in variable-length
code words which are fed into the context modeler. Here, local
statistical dependencies of the source symbols are utilized to steer
the subsequent BAC.

The typical structure of G for exemplary NTF parameters W
(and G′ for H) is depicted in Figure 1. Note that both matrices
are strongly structured: First, the quantization index 0, representing
the lowest value, is by far the most frequent value, due to the
sparse structure of spectrograms. Second, for each component k,
long runs of zeroes and other values are also common. In the
literature, this typical structure of NTF matrices is used for example
in the design of NTF constraints, adapting NTF to sparseness or
continuity properties [21], [22]. We exploit these properties for the
proper selection of binarization methods and the design of several
contexts. Due to the similar structure of W and H, we propose to
use the same context modeling for both matrices.

IV-A. Context selection
For binarization of G, we keep the information about the

position of the corresponding gf,k by adding the exponent (f, k)
to each bin-string, composed of bins bf,kn . Thus, (5) becomes

bf,k = C (gf,k) =
(
bf,k1 , . . . , bf,kn , . . . , bf,kNC

)>
. (6)

We use TU coding for binarization as the quantizer for W and
H is operating at lower bit rates. For the exact parametrization,
refer to Section V. TU coding is optimal for a geometric shaped
distribution that we observed for such a coarse quantization and
is achieved by coding the positive integer symbol gf,k with a ’1’-
sequence of length gf,k terminated with a single ’0’ [20]:

C (gf,k) = 11 . . . 1︸ ︷︷ ︸
gf,k times

0. (7)

For the maximal value of gf,k = NQ − 1, the terminal ’0’
is omitted. Although we choose TU as binarization method, the
following context design is also applicable for the prefix part of
Exponential Golomb codes, generalizing TU coding.

Our context modeling is applied at the bin level of each bin-
string given in (6). For each bin, a specific context is chosen,
depending on the following conditions:
• The value of the corresponding bin bf−1,k

n of the preceding
bin-string within component (or column) k.

• The position n within the current bin-string, if the other
condition does not apply.

Sj NTF Coding bit
stream

Decoding Wiener
filter

S̃j

Θ Θ̄

X

Decoder

(a) Block diagram of ISS encoder [5].

W Quantization Binarization BAC

Context
Modeler

bit stream
G

{bf,k}
Coding

(b) Proposed parameter coding block for W with CABAC.

Fig. 2: Block diagrams of ISS encoder and parameter coding block.

An overview of the entire conditional context selection is given
in Table I. Here, ctxn,na represents the default context being
selected if no condition is met (not available). This can occur if
no corresponding bin at position n of a preceding bin-string is
available. This context models the global distribution p

(
bf,kn

)
for

all f and k. If the corresponding bin bf−1,k
n of the preceding bin-

string within column k is available and has the value ’0’ or ’1’,
the contexts ctxn,up0 or ctxn,up1, respectively, are chosen which
model the current conditional probabilities given the bin value of
the preceding bin-string p

(
bf,kn | bf−1,k

n

)
.

In order to limit the total number of contexts, we introduce the
parameter NLBP which is the last bin position using the described
conditional context modeling. All bins bf,kn with n > NLBP are
coded using the same context ctxrst.

Table I also shows the initialization of the proposed contexts.
Note that each context has to be initialized at the encoder and
decoder side with the same initial values. Other context designs,
for example contexts modeling the behavior across components
(between bf,kn and bf,k−1

n ) or across more than one preceding
bin-string (bf,kn , bf−1,k

n and bf−2,k
n ), did not improve performance

significantly and are therefore not evaluated in Section V.
Given our choice of TU coding as binarization (7), the condi-

tional contexts ctxn,up0 and ctxn,up1 can be interpreted as follows:
ctxn,up0 models the probability of runs of identical values in a
column of G which for n = 1 is a sequence of quantized zero
values. The context ctxn,up1 models a sequence of values in a
column of G which are larger or equal than value n.

An example is given in Table II, how quantization indices from
a specific section occurring in the third column of G (shown in
Figure 1) map to bin-strings using TU coding. We further show how
contexts are chosen for each bin in the given example, depending
on the aforementioned conditions.

IV-B. Complete system
The encoder depicted in Figure 2a resembles the structure of the

baseline ISS method [5]. The source spectrograms Sj are factorized
by NTF as described in Section II-A. The NTF parameters Θ are
quantized and the resulting quantization indices are encoded. This
procedure is shown in detail for W in Figure 2b: After quantization,
G, the integer-valued representation of W, is binarized yielding
bin-strings {bf,k}, one for each element at position (f, k). Given
the already coded bin-strings, the context modeler chooses the
appropriate context for bin bf,kn and passes this information to the
binary arithmetic coder. The resulting bit stream is transmitted to
the decoder. Here, the estimated sources S̃j are obtained by Wiener-
filtering mixture X as shown in Section II-B.

V. EVALUATION
V-A. Data sets and setup

In this paper we are using two independent test sets for eval-
uating the proposed method. For evaluation of the context design



Method GBAC CABAC

Conditional Contexts – – ctxn,up0 ctxn,up1 ctxn,up0, ctxn,up1

Mean saving, % −5.86 −15.30 −23.94 −26.08 −25.64
Mean BD saving, % −8.92 −18.28 −27.14 −28.99 −28.53

Table III: Bit rate savings with respect to GZIP for GBAC (NLBP = 0) and CABAC (NLBP = 10) for the QUASI test set.

for CABAC, we used 10 mixtures consisting of 4 – 7 sources (e.g.
vocals, guitar, drums and effects) of the QUASI database2. We
then fixed the parameters of the proposed methods and compare it
against reference coding methods on a second database: We used
100 mixtures consisting of 4 sources (bass, drums, vocals, other)
of the DSD100 database3 for this task. For both databases, each
recording is sampled at 44100 Hz and is 30 s long. The separation
quality is measured with the signal-to-distortion ratio (SDR, in
dB) between original and estimated sources. After taking the mean
over the sources for each mix, the resulting SDR value is set in
reference to the SDR obtained by an oracle estimator [12] which
estimates optimal Wiener filter masks. The resulting measure is
denoted with δSDR. The side-information bit rate R of the bit
stream (see Figure 2a) is measured in kbps per object.

We use STFT as time-frequency transform with a 93 ms window
size and 50 % overlap. The spectral dimension of the spectro-
grams is filtered with a Mel-filterbank with F = 400 Mel-
filters [18]. Different numbers of NTF components per source
K/J ∈ {1, 2, . . . , 10} are evaluated with J number of sources
and β = 1 (Kullback–Leibler divergence). The NTF parameters
are initialized with an SVD-based method [23] and quantized
with NQ ∈ {2, 4, 8, 16}. Note that K/J and NQ have strong
influence on the bit rate R. For CABAC, Truncated Unary (TU) as
binarization is chosen given the comparatively small values for NQ.
We determined experimentally that EG coding only gives small bit
rate savings for the highest values of NQ. We fixed NLBP = 10,
resulting in a total number of 31 contexts.

For each mixture, all combinations of parameters (K/J , N )
result in multiple(R, δSDR)-points which are optimized to yield
the Pareto front per mixture. The optimal points are smoothed using
the locally weighted scatter plot smoothing method [24] to obtain
rate/quality curves. We also calculate bit rate savings with respect
to the reference GZIP by averaging the rate differences of all Pareto
points. Additionally, bit rate savings averaged per mixture following
the Bjøntegaard Delta (BD) measurement method [25] are given.

For comparison, we encode W and H with GZIP, Huffman
Coding (HC), Arithmetic Coding (AC) and Run-length Encoding
(RLE) [14]. To investigate the influence of conditional context
modeling, we also test deactivating the context-modeler and using
the BAC with only one global context ctxrst (GBAC). We choose
to evaluate RLE additionally because sequences of equal values are
present in the data quite often as exemplified in Figure 1. RLE is
able to approach conditional entropy if the Markov property of the
input data is fulfilled [14]. RLE was already introduced to NMF-
based ISS in [7] for coding H. Here, we use RLE for coding both
W and H and choose EG codes for binarization of the resulting
integer-valued run-lengths and -symbols.

V-B. Experiments and discussion
First, we evaluate CABAC and our context design in reference to

GZIP as it was used in the baseline [5] on the QUASI database. To
assess CABAC’s performance, mean bit rate savings with respect to
GZIP are calculated. Table III gives an overview of the mean bit rate
savings of GBAC and CABAC using different context settings: For
both methods GBAC and CABAC, ctxrst is activated. For CABAC,
ctxn,na is activated at all times additionally.

2http://www.tsi.telecom-paristech.fr/aao/en/2012/03/12/quasi/.
3“MUS 2016” task, http://sisec.inria.fr.
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Fig. 3: Rate-quality curves for the proposed CABAC coding scheme
with NLBP = 10 and ctxn,up1 activated in comparison with
reference methods for the DSD100 database.

• Activating ctxn,na without any other conditional context
already yields a noticeable decrease in rate compared to
GBAC from −5.86% to −15.30%.

• Regarding the conditional contexts, the best results are
achieved by activating ctxn,up1 in addition to ctxn,na and
ctxrst (−26.08%), closely followed by ctxn,up0 (−23.94%).

• Activating both ctxn,up0 and ctxn,up1 gives a slightly less
reduction compared to activating ctxn,up1 alone.

Regarding the ablation study, under which different conditional
contexts are disabled, it can be seen that the addition of contexts,
which do not provide significant conditional probabilities, does not
necessarily manifest in higher coding efficiency.

Figure 3 shows rate-quality curves for CABAC with ctxn,up1
activated for the DSD100 test set. First, we conclude that CABAC
consistently outperforms all tested reference methods considerably.
Compared to GZIP, average rate reductions of around −28%
can be achieved. Run-length encoding (RLE) is the method with
the second highest rate reduction of around −12%. AC and HC
outperform GZIP at lower bit rates whereas AC outperforms HC.

A full MATLAB implementation of the proposed algorithm and
a standalone CABAC interface for MATLAB can be found on the
companion website for this paper4.

VI. CONCLUSION
We proposed the application of context-based adaptive binary

arithmetic coding (CABAC) in the field of informed source sepa-
ration (ISS). We designed contexts fitting the typical structure of
parameters obtained by non-negative tensor factorization (NTF).
We evaluated different context settings for CABAC and showed
experimentally on a second test set that CABAC outperforms
widely used reference methods such as GZIP or conventional
arithmetic coding. Run-length encoding proved to be an adequate
low-complexity alternative to CABAC although being less efficient.

Future work could include investigating if prediction methods
could decrease the parameter bit rate in a high rate setting. Methods
for rate-distortion optimized quantization (RDOQ) could be tested
as well as NTF with sparseness constraints as proposed in [13].

4http://www.ient.rwth-aachen.de/cms/icassp2018/
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