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Abstract—This paper presents a new transient detection algorithm

which uses the average absolute discrete group delay as a measure for

the transient characteristic of sound. It shows that a bell-shaped window

function performs a high-pass effect to the spectral coefficients, leading

to a concentration of group delay values in the π-area for steady-state

signals. This concentration is violated if a transient occurs. From this

phenomenon, we derive a new transient detection method, improve it by

a maximum order-filter, and show that it works well on percussive and

tonal-percussive sounds.

I. INTRODUCTION

A transient is an audio signal portion which changes quickly

and in a non-predictable way [1]. The detection of transients is

important for applications like onset detection or the determination of

the best time/frequency resolution trade-off. Beside others, one class

of transient detection algorithms is based on the short-time Fourier

transform (STFT). These algorithms usually analyze the evolution of

the STFT magnitudes or the deviation of phase information across

the time axis.

Time-frequency representations like the STFT allow a signal

analysis in the time and frequency domain. However, they lead to

a resolution trade-off in both domains: A high temporal resolution

leads to a low frequency resolution and vice versa. Within one time

frame, the temporal behavior is encoded in the phase information.

Phase-locking vocoders [4] exploit this fact to yield a more time-

accurate result in transient regions. This leads to the idea of analyzing

the phase information across the frequency axis to detect transients.

Therefore, we use the group delay ∆ϕ/∆f as an auxiliary measure.

Similar measures have already been developed for glottal pulse

extraction [5] and for beat detection [3]. These approaches search

for zero crossings in the derivative of the unwrapped phase over

frequency. In contrast, our algorithm works directly on the phase

difference restricted to the [−π, · · · , +π] range. Instead of searching

for zero crossings, it uses the absolute value’s average of the group

delay. As we show, for common window functions, this value

approximates π for steady-state signals, but not for transients.

This paper is organized as follows: Section II analyzes the phase

coincidences in steady-state conditions and during attack slopes.

Furthermore, we introduce the absolute value of the group delay

as a measure of phase coincidence, describe the influence of the

analysis window shape, and present a transient detection criterion

based on these principles. Section IV introduces several modifications

of this detection function which lead to improvements. Section V-C

illustrates the properties of this detection function with practical

examples and an onset-based evaluation. The paper closes with

conclusions and an outlook.

II. FUNDAMENTALS

The STFT of a given discrete-time signal x(n) is given as

X(m, k) =
∞X

n=−∞

x(n)w(mS − n)e−j 2πk
N

n, (1)

where w denotes the analysis window, m the frame index for the

STFT, and S the hop size between two analysis frames.

The STFT coefficients X(m, k) are complex numbers and thus can

be expressed in polar coordinates as magnitude |X(m, k)| and phase

ϕX(m, k), where ϕX(m, k) = arg X(m, k) denotes the angular

argument of X(m, k). To restrict the range of all phase information

to [−π, · · · , +π], we use the principle argument function [7]:

princ(ϕ) := ((ϕ + π) mod (−2π)) + π. (2)

The group delay is usually defined as the negative derivative of

the unwrapped phase with respect to the frequency, −dϕ/df . In this

paper, we use the phase difference between two adjacent frequency

bins and restrict the group delay to [−π, · · · , +π]. Therefore, no

phase unwrapping is needed. To distinguish this phase difference from

the common group delay, the discrete group delay is given by

DX(m, k) = princ (ϕX(m, k) − ϕX(m, k−1)). (3)

To determine whether an STFT time frame contains a transient

or not, we use the average absolute value of this group delay. The

absolute value operator maps the result from the [−π, · · · , +π] range

to the [0 · · ·π] range and thus delivers information whether the phase

differences w.r.t. frequency concentrate around the π area or not.

In the following, we abbreviate this average absolute discrete group

delay D̂ as AAGD:

AAGD = D̂X(m) =
1

N

NX

k=1

|DX(m, k)| (4)

III. AAGD WITH DIFFERENT WINDOWS

A. Rectangular Windows

In the following, we consider w(n) to be the quasi-symmetric

rectangular window, which does not change the phase information

except adding a time shift by 1/2 sample.1

In steady-state parts of audio signals, the phase ϕX(m, k) depends

mainly on the previous time frame phase for the same frequency

bin, ϕX(m−1, k). Phase vocoder theory ([7], pp. 246) models the

STFT output as a sequence of a variable-frequency sinusoid oscillator

bank and a filter bank. For each frequency band k, let the assumed

oscillator frequency at a given time index m be fk(mS). Then, we

can calculate the actual phase approximately as

ϕX(m, K) = ϕX(0, K) +

Z mS

0

2πfk(τ)dτ (5)

1As STFT are usually implemented with the FFT, an even window size
is preferable. On the other hand, it is not possible to create an even-sized,
time-discrete, symmetric window function that includes the y axis as a sample
index. For that reason, the window FFT will always include a linear phase term
representing a 1/2-sample time shift. We neglect this shift in the following.



We can determine the instantaneous frequency fk by exploiting

the phase difference of the two preceding time frames. fs denotes

the sampling frequency:

fk = fS ·

„
k

N
+

ϕX(m, k) − ϕX(m − 1, k)

2π

«

(6)

Since fk depends on the time index m, we can assume from

the phase vocoder model that the phases within one time frame

are independent. To confirm this assumption, we measured the

distributions of phase differences within time frames in steady-state

context for some signals. The results are given in Fig. 1 (solid lines).

They show an approximately equal distribution in the case of noise.

In the case of tonal instruments, the phase distribution has a primary

weight in the area around zero.

Pink Noise Oboe

Fig. 1. Distribution of phase differences for pink noise and for an oboe
signal. Each signal is windowed with a rectangle, a Hann, and a squared
triangle window, respectively. Note that the Hann and the squared triangle
window tend to transform the phase differences to the π area.

B. Bell-Curved Window Shapes

Fig. 1 also contains the distribution of the wrapped phase difference

for the Hann and the squared triangle window (see also Fig. 2). We

can observe that the phase difference distributions for these windows

are emphasized around π. This effect can be described best using the

convolution theorem. Let a time frame m be given. The signal x(n)
is multiplied in the time domain with w(n). This corresponds to a

convolution in the frequency domain:

y(n) = x(n) · w(n)� Y (k) = X(k) ∗ W (k) (7)

In the following, we treat the convolution in the frequency domain

as FIR “filtering”. Since the “filter” works on the frequency domain,
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Fig. 2. Rectangle, Hann, and squared triangle window. The windows are
normalized such that they contain the same area.

TABLE I
MAX.-AVG. RATIO P (SEE SECTION III-B1) AND AAGD D̂ FOR

RECTANGLE, HANN AND SQUARED TRIANGLE WINDOWS. THE AAGD
WAS MEASURED WITH PINK NOISE AND WITH A PIANO SIGNAL.

Window w P D̂ D̂ filter D̂ D̂ filter
Pink noise Piano

Rectangle 1.000 1.568 2.614 0.491 0.935
Hann 2.001 2.301 2.956 2.302 2.961

Squared Triangle 2.997 2.489 3.002 2.514 3.007

we call this process meta-filtering, and the spectral domain this filter

works on meta-frequency domain. The impulse response of the meta-

filter is given by the DFT coefficients of the window.

An important property of these meta-filter impulse responses is

their high-pass character. To prove this, we show first that the meta-

frequency domain is actually the time domain.

As shown in [2], the inverse DFT is equivalent to the DFT of the

time-reversed signal:

IDFTn {Xk} =

N−1X

k=0

Xkej 2π
N

kn = DFT−n {Xk} . (8)

We can follow that

DFTn {DFTk {xn}}
| {z }

meta-spectral domain

= IDFT−n {DFTk {xn}} = x−n
|{z}

time domain

(9)

Since all common window functions are symmetric and considered

periodic in DFT analysis, we can assume that w[−n] = w[n]. As a

result, the meta-filter transfer function is simply the window function

in the time domain. For better understanding, we will nevertheless

call the time domain “meta-spectral domain” when we refer to the

domain of the spectrum of the spectrum.

Most common window functions are symmetric, bell-shaped, and

have their maximum at the center. In the meta-spectral domain, this

corresponds to the normalized meta-frequency π, yielding a high-pass

character for the meta-filter.

In other words: A high peak in the center of the window cor-

responds to a strong amplification of high-meta-frequency content.

Strong high-meta-frequency content, on the other hand, indicates a

strong oscillation of the Fourier coefficients along the frequency axis.

This holds especially for the meta-spectral rate fg = fs/2, which

corresponds to the center of the window. A strong oscillation at

this Nyquist rate yields in alternating phases for neighboring Fourier

coefficients. The wrapped group delay D(n, k) and the AAGD

approach π (180 degrees) in this case.

1) Measuring the high-pass property: A simple method to mea-

sure the meta-high-pass property of a window is the maximum-

average ratio P of the window:

P :=
maxN

n=1 w[n]
PN

n=1
w[n]/N

(10)

For some important windows, Table I gives the maximum-average

ratio P and the AAGD D̂ for pink noise and for a piano signal.

2) Digital Null: A special issue occurs if an STFT coefficient

has zero magnitude, because in this case the phase is arbitrary.

This problem mainly occurs in signals that consist of zeros. We can

avoid this problem by adding some white noise — much below the

quantization level — to the signal. This introduces only very small

signal changes, but practically ensures that the STFT does not contain

zeros.



C. Phase coincidences at attack slopes

The key to understand the behavior during attack slopes is the

envelope of the windowed signal, not the window function itself. In

the steady-state case we can assume that the envelope of the un-

windowed signal does not have major changes during the window

length. The window function introduces an envelope with a maximum

at the center, leading to the high-pass property as described in

Section III-B and to a higher probability for the absolute group delay

|D(n, k)| to approach π.

During attack slopes, the resulting envelope is influenced both

by the window function and the attack envelope. The maximum

amplitude is not at the center anymore. For that reason, the meta-

frequency high-pass effect does not occur, so the AAGD has not

the tendency towards π as it has in the steady-state case. For this

reason, we can employ D̂(n) as transient detector when we choose

an appropriate window function.

The choice of the window function is a classical trade-off: The

steeper the bell curve, the stronger is the high-pass effect, the steeper

the envelope of the signal must be to count as transient. Hence, steep

windows like the squared triangle window are more robust against

noise, but less sensitive against transients than e.g. the Hann window.

IV. MODIFICATIONS

The AAGD as proposed in Section II has the disadvantage that it

contains a rather high level of noise. When we apply this measure

for onset detection, we must additionally consider that the onset char-

acteristics of different instruments take place in different frequency

ranges [4]. For that reason, following postprocessing steps are suitable

to improve the measure:

• For denoising, the absolute wrapped group delay |D(n, k)| in

AAGD calculation is replaced with the output D̃(n, k) of a

maximum-order filter with the filter order m:

D̃(n, k) = max
i∈Z,− m

2
<i< m

2

|D(n, k + 1)| (11)

An order of 5 (i ∈ {−2,−1, 0, 1, 2}) has empirically shown to

be a good choice.

• It is possible to adjust the algorithm to a certain frequency

range or a combination of frequency ranges by restricting

the calculation of the average to the desired range. For onset

detection, the optimal range depends on the instrument. A good

range for our piano example is 0 · · ·
fg

8
(see Section V-A).

• Some instruments (e.g. cembalo) make additional noise when a

note event finishes. This noise leads to phase coincidences also

at the end of the note event. We can suppress this effect by

adding more noise to the signal to detect; the noise level should

be higher than the note-end noise, but of course lower than the

onset.

V. PRACTICAL EXAMPLES

We show the effectiveness of this transient detection method on

two examples, the piano, and, in more details, the castanet onset

detection. As shown on the latter case, one onset leads to two peaks

on the AAGD.

A. Detection of Piano Onsets

In Fig. 3, the beginning of Beethoven’s sonata op. 90 is depicted.

We chose an STFT frame size of 2048 samples and a hop size

between adjacent frames of 512 samples at a sampling rate of 48

kHz. The recording is the left channel from Track 39 of the EBU-

SQAM collection [6]. In all graphs except the one notated as “full

range”, the frequency range was limited to [0;
fg

8
].
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Fig. 3. AAGD for squared triangle and Hann window, with and without max-
imum order filter (filter order=5) for a piano signal (score below diagrams).
In all AAGD plots except “full range”, the frequency range is restricted from
0 to 3000 Hz (fg/8). The full range plot has been generated using 3-oder
maximum filtering. See Section V-A for details.

The example illustrates the effects of different window functions

and postprocessing steps. The AAGD is higher for the squared

triangle window (higher peak-to-average ratio) than for the Hann

window. Additionally, it is obvious that employing a maximum order-

filter additionally rises the AAGD and reduces the variance. These

results are confirmed by Table I. However, we run into a trade-off

since our goal is a high separability between transients and steady-

state parts. The higher the variance is, the more likely transients are

detected, but the higher is the difficulty to get the detected transients

out of the AAGD deviation noise. A broader evaluation which helps

to answer this question is presented in Section V-C.

The importance of the chosen frequency range is illustrated by

the comparison of the lowest two graphs. They are generated with a

squared triangle window and filter, but the upper one works with a

restricted frequency range ([0;
fg

8
], the lower one with the full range

[0; fg]. The softer onsets are not detectable in the full-range graph.

B. A Single Castanet Onset In Detail

Fig. 4 presents a castanet clap in detail. The recording is from Track

27 of the EBU-SQAM collection [6]. The STFT frame size is also

2048 samples with 48 kHz sampling frequency, but the hop size is

set to one sample. The left part of the figure illustrates the waveform

envelope, the middle part shows D̂(n), where n goes downside. The

most important points are marked with the numbers 1–4. For all

points, the windowed waveform of the signal around the given point

is illustrated on the right side of the figure.

As can be noticed, the onset leads to two drops in the AAGD

(Markers 1 and 3), where the first one becomes even lower than the



Fig. 4. AAGD of a castanet clap (left) and corresponding waveform at four
characteristic points (right) using the ∆2 window. See Section V-B for details.

second one. Between them (Marker 2), the AAGD becomes higher

than the average. This can be easily explained with the assumption

that the AAGD corresponds to the energy concentration in the center

of the window. For Marker 2, this is obvious, but it explains even

the asymmetry between Marker 1 and 3. Since for most percussive

signals the onset time is lower than the release time, the asymmetry

for energy concentration is greater at onset time, because an audio

signal has usually lower energy before the onset than after. Marker 4

shows an average steady-state example. The window function leads

to an energy concentration in the center of the window. However, the

concentration is weaker as within the onset (Marker 2).

The comparison between Marker 2 and 4 shows the basic differ-

ence between our approach and the group-delay-based calculation of

the center of gravity [4]: Our algorithm does not only take the position

(=center of gravity) into account, but also interprets the spread of the

windowed signal over the time axis. Therefore Marker 2 denotes a

higher peak than Marker 4.

C. Evaluation

In order to demonstrate that the proposed algorithm actually works

as onset detection, we have annotated manually a subset of percussive

and pitched-percussive instruments from the EBU-SQAM collection.

The subset contains 276 onsets in 43 files. The transient detection is

based on a threshold θ; each frame yielding an D̂(n) value below θ
is considered as transient. We call a detected transient true positive if

its position is 0 to 50 ms before a hand-labeled onset, false positive

otherwise. The tolerance is the same as in [1], the movement to before

the onset is due to the asymmetry of the detection function described

in Section V-B. To determine θ, we calculated the mean µ and the

standard deviation σ of the D̂(n) values. The threshold θ is now

given by

θ = µ − λσ, (12)

where the parameter λ denotes how many standard deviations an

AAGD must be off the mean value µ to be detected as transient.

The lower λ, the more sensitive and the less robust is the transient

detector. As FFT window size we have chosen 2048 samples. To mask

the noise at the end of note onsets, white, uniformly distributed noise

with a peak level of -34 dB was added. In contrast to Section V-A,

we computed the D̂(n) values over the whole frequency range due

to the variety of investigated instruments.

0 10 20 30 40 50
False Positives (%)

60

70

80

90

100

T
ru

e
P

o
si

ti
v
es

(%
)

∆
2 window

Hann window

0 10 20 30 40 50
False Positives (%)

60

70

80

90

100

T
ru

e
P

o
si

ti
v
es

(%
)

with filter
without filter

Fig. 5. Transient detection results in percentages of detected transients vs
false detections. The default configuration (solid lines) is: Squared rectangle
window, maximum filter (order=5), full range.

The results are presented in Fig. 5. To record one curve, we varied

λ between 1 and 4 to get different operating points. The optimal

result is the upper left point of the graph, i.e. 100% true positives at

0% false positives. We can see that the transient detection principally

works. The best result (88.8% true vs 4.3% false positives) we got

with the squared triangle window and maximum-order filtering with

a filter order of 5. Both steps lead to significant improvements.

VI. CONCLUSIONS

In this paper, we have demonstrated that the wrapped discrete

group delay has a distribution which depends on the STFT window

function and on the steady-state/transient behavior of the signal. Bell-

curved window functions concentrate the AAGD around π in the case

of steady-state signals, but not for transients. This phenomenon can

be exploited by the creation of a threshold-based transient detector.

The detection results depend on the chosen window and a proper

denoising-filter method: The squared triangle in combination with a

maximum-order filter delivered good results.
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