Linear Discriminant Analysis Metric Learning using Siamese Neural
Networks

Network architecture: The network architec-
ture used for training the Siamese Neural Network
(SNN) is described in Table 1. The Convolutional
Neural Network (CNN) architecture is shown be-
low since the SNN consists of two parallel CNNs
with shared weights.

Projection of feature vectors along eigenvec-
tor directions at the end of training: The pro-
jection of feature vectors at the end of training
is shown in Figure 1. One can observe that the
within-class scatter has reduced and between-class
scatter has increased resulting in a class projection
such that the classes are linearly separable along
the projected discriminant directions.

For CIFAR-10 we used the dropout values of
0.05, 0.10, 0.15, and 0.20 with learning rates of
0.1, 0.01, and 0.001. The batch sizes used were,
100, 500, and 1000. The simulation results are
summarized in Table 2. For STL-10, we measured
the classification accuracy for batch sizes of 125,
200, and 250 and learning rates of 0.0001, 0.0002,
and 0.0003. We used dropout values of 0.1, 0.3,
0.5, and 0.9. The highest accuracy obtained on
this dataset is 71.62% which is the best value re-
ported for LDA learning in STL-10 to the best of
our knowledge. The results are summarized in Ta-
ble 3.

For MNIST, we used batchsizes of 100, 500,
and 750 and learning rate of 0.01, 0.02 and 0.03.
The dropout was varied from 0.1, 0.3, 0.5, 0.9. The
simulation results are summarized in Table 4. The
main point to be noted here is that since the num-
ber of classes is 10, in all these datasets, our feature
vector dimension is of length 9 which corresponds
to the LDA discriminant directions.

Gradient computation for backpropagation:
Here we summarize the gradient calculation of our
proposed loss function for backpropogation. The
KL divergence between two dissimilar class distri-
butions p, and py is given by:
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After LDA projection we have ¥7X*W¥ = X¥
and ¥TCp, ¥ = C7_. The derivative of the KL

divergence w.r.t the feature vector y is given by:
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Let the feature vector y belong to class b and since
for LDA we assume the covariance matrices to be
equal, we have ¥ = 3¥. We computed the gra-
dient w.r.t feature vector y belonging to class b as
follows. The partial derivative of (1) w.r.t the i*
component of y is:
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The above derivative can be decomposed into two
terms as:

apy(%(;alpb) _ %tr [aacy;a =y
oy
gy Chal @

where C}_ = (u}, — u¥)” (u} — u¥). On expand-
ing the above equation we have:
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Since we consider that y belongs to class b, the
derivative becomes
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where @y, () corresponds to number of images in
class b and total number of images respectively.



MNIST

CIFAR-10

[ STL-10

Input 1 x 28 x 28

3 x 3 conv, 32, BN-ReLU, (0.3)
3 x 3 conv, 32, BN-ReLU

2 % 2 max-pool

3 x 3 conv, 64, BN-ReLU, (0.4)
3 x 3 conv, 64, BN-ReLU

2 % 2 max-pool

3 x 3 conv, 128, BN-ReLU, (0.4)
3 x 3 conv, 128, BN-ReLU, (0.4)
2 x 2 max-pool

Linear (128 — 128)

Linear (128 — 9)

KL-divergence

LDA-Loss

Input 3 x 32 x 32

3 x 3 conv, 64, BN-ReLU, (0.3)
3 x 3 conv, 64, BN-ReLU

2 x 2 max-pool

3 x 3 conv, 128, BN-ReLU, (0.4)
3 X 3 conv, 128, BN-ReLU

2 x 2 max-pool

3 x 3 conv, 256, BN-ReLU, (0.4)
3 x 3 conv, 256, BN-ReLU, (0.4)
3 x 3 conv, 256, BN-ReLU

2 x 2 max-pool

3 x 3 conv, 512, BN-ReLU, (0.4)
3 x 3 conv, 512, BN-ReLU, (0.4)
3 x 3 conv, 512, BN-ReLU

2 x 2 max-pool

3 x 3 conv, 512, BN-ReLU, (0.4)
3 x 3 conv, 512, BN-ReLU, (0.5)
3 x 3 conv, 512, BN-ReLU

2 % 2 max-pool

Linear (512 — 512)

Linear (512 — 9)

KL-divergence

LDA-Loss

Input 3 x 96 x 96

3 x 3 conv, 64, BN-ReLU, (0.5)
3 x 3 conv, 64, BN-ReLU

2 x 2 max-pool

3 x 3 conv, 64, BN-ReLU, (0.5)
3 X 3 conv, 128, BN-ReLU

2 x 2 max-pool

3 x 3 conv, 128, BN-ReLU, (0.5)
3 x 3 conv, 256, BN-ReLU, (0.5)
3 x 3 conv, 256, BN-ReLU

2 x 2 max-pool

3 x 3 conv, 256, BN-ReLU, (0.5)
3 x 3 conv, 512, BN-ReLU, (0.5)
3 x 3 kernel, 512, BN-ReLU

2 x 2 max-pool

3 x 3 conv, 512, BN-ReLU, (0.5)
3 x 3 conv, 512, BN-ReLU, (0.5)
3 x 3 conv, 512, BN-ReLU

2 % 2 max-pool

Linear (512 % 3 x 3 — 512)
Linear (512 — 9)

KL-divergence

LDA-Loss

Table 1: Network architecture used in our experiments for the three datasets. Conv - convolutional kernel, BN - Batch Normalization,
ReLU - Rectified Linear Unit, % of introduced dropout is shown in brackets.

[ Lr [ dropout | (bs 100) | (bs500) | (bs 1000) | [ Lr [ dropout | (bs 125) | (bs 200) | (bs 250) |

0.1 0.05 81.22 75.73 65.72 0.003 0.1
0.1 0.10 81.35 76.73 67.20 0.003 0.3
0.1 0.15 82.23 78.23 68.21 0.003 0.5
0.1 0.20 82.34 78.43 68.33 0.003 0.9
0.01 0.05 84.23 88.17 72.17 0.001 0.1
0.01 0.10 83.57 86.54 73.15 0.001 0.3
0.01 0.15 82.21 84.17 73.63 0.001 0.5
0.01 0.20 81.67 82.22 73.89 0.001 0.9
0.001 0.05 68.31 72.44 65.43 0.002 0.1
0.001 0.10 70.22 71.98 66.97 0.002 0.3
0.001 0.15 72.20 65.21 68.23 0.002 0.5
0.001 0.20 74.18 62.13 69.34 0.002 0.9

64.25 71.62 62.77
58.17 67.41 57.69
52.59 64.81 46.22
41.19 63.71 42.77
63.21 62.34 61.32
58.23 59.33 58.90
55.22 57.68 55.98
55.10 59.98 57.98
57.21 59.93 56.23
55.32 58.58 54.43
53.29 56.64 54.23
52.59 57.71 55.55

Table 2: Simulation results on CIFAR-10 for different batch

sizes and dropout. Lr denotes the learning
the batch size. Accuracy is given in %.
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Table 3: Simulation results on STL-10 for different batch
sizes and dropout. Lr denotes the learning rate and bs denotes

the batch size. Accuracy is given in %.
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: to the derivative of the KL divergence w.r.t one
0 component of the feature vector y. The derivative
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w.r.t all the L — 1 components can be computed by
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Figure 1: Projection of image features along different eigenvector directions.

| Lr [ dropout | (bs 100) [ (bs 500) [ (bs 750) |
0.01 0.1 98.71 99.57 99.43
0.01 0.3 99.12 99.73 99.33
0.01 0.5 99.61 99.53 99.55
0.01 0.9 99.11 99.54 99.64
0.02 0.1 98.73 98.45 98.23
0.02 0.3 97.34 97.98 97.55
0.02 0.5 98.54 98.59 98.19
0.02 0.9 99.06 98.47 98.89
0.03 0.1 98.43 98.33 98.56
0.03 0.3 98.59 98.58 98.87
0.03 0.5 98.45 98.49 98.51
0.03 0.9 99.03 99.07 98.55

Table 4: Simulation results on MNIST for different batch

sizes and dropout. Lr denotes the learning rate and bs denotes
the batch size. Accuracy is given in %.

concatenating the partial derivatives.



